
seniority_list Documentation
Release 0.65

Robert E. Davison

May 13, 2020

CONTENTS

I seniority_list 3

1 features 5

2 program notes 7

3 installation 9
3.1 dependencies . 9
3.2 installing Python and Python libraries . 10
3.3 installing seniority_list . 11

4 operational overview 13
4.1 abstract . 13

4.1.1 basics . 15
4.2 quick outline of seniority_list . 15

4.2.1 gather and prepare data . 15
4.2.2 build the basic program files from the input data 17
4.2.3 create the “skeleton” . 17
4.2.4 calculate standalone dataset . 18
4.2.5 calculate integrated order-dependent dataset 19
4.2.6 analyze results . 20
4.2.7 modify list order with the editor tool (optional) 21
4.2.8 create lists with list_builder (optional) 23
4.2.9 reinsert inactives . 23

4.3 interacting with seniority_list . 24

5 user guide 25
5.1 general . 25

5.1.1 program components and file structure 27
5.2 program flow . 35

5.2.1 input data . 35
5.2.2 build program files . 37
5.2.3 creating the static ‘skeleton’ file . 49
5.2.4 creating datasets . 51

i

5.2.5 filtering and slicing datasets . 56
5.2.6 visualization . 56

5.3 editor tool . 59
5.3.1 the editor tool controls . 63
5.3.2 using the editor tool . 75
5.3.3 summary . 92

5.4 building lists . 93
5.5 notebook interface . 94

5.5.1 notebook basics . 95
5.5.2 sample notebooks . 99

5.6 program demonstration . 106
5.6.1 new case study . 106
5.6.2 changing program options or settings . 122
5.6.3 saving/loading calculated case study data 123
5.6.4 anonymizing input data . 125

5.7 program restoration . 128

6 excel input files 129
6.1 master.xlsx . 131

6.1.1 master.xlsx format guide . 132
6.2 proposals.xlsx . 133

6.2.1 proposal.xlsx format guide . 134
6.3 pay_tables.xlsx . 134

6.3.1 pay_tables.xlsx format guide . 136
6.3.2 job level hierarchy . 140

6.4 settings.xlsx . 141
6.4.1 settings.xlsx format guide . 145

6.5 anonymizing input data . 167

7 quick report 169
7.1 general . 169

7.1.1 computed statistics . 170
7.1.2 grouping method definitions . 170
7.1.3 excel files . 171
7.1.4 chart images . 174
7.1.5 time-in-job and career pay differential report 176

8 example gallery 179
8.1 screenshots and notes . 179
8.2 editor tool . 233

9 converter module 239

10 editor_function module 241

11 functions module 245

ii

12 interactive_plotting module 279

13 list_builder module 281

14 matplotlib_charting module 287

15 reports module 345

16 change log 351
16.1 version history . 351

16.1.1 0.65 . 351
16.1.2 0.64 . 352
16.1.3 0.63 . 352
16.1.4 0.62 . 353
16.1.5 0.61 . 354
16.1.6 0.60 . 355
16.1.7 0.59 . 355
16.1.8 0.58 . 356
16.1.9 0.57 . 357
16.1.10 0.56 . 358
16.1.11 0.55 . 359
16.1.12 0.54 . 359
16.1.13 0.53 . 360
16.1.14 0.52 . 361
16.1.15 0.51 . 362
16.1.16 0.50 . 363
16.1.17 0.49 . 364
16.1.18 0.48 . 366
16.1.19 0.47 . 367
16.1.20 0.46 . 368
16.1.21 0.45 . 369
16.1.22 0.44 . 370
16.1.23 0.43 . 370
16.1.24 0.42 . 371
16.1.25 0.41 . 371
16.1.26 0.40 . 372
16.1.27 0.39 . 373
16.1.28 0.38 . 373
16.1.29 0.37 . 374
16.1.30 0.36 . 374
16.1.31 0.35 . 374
16.1.32 0.34 . 375
16.1.33 0.33 . 375
16.1.34 0.32 . 375
16.1.35 0.31 . 375

iii

16.1.36 0.30 . 376
16.1.37 0.29 . 376
16.1.38 0.28 . 376
16.1.39 0.27 . 377
16.1.40 0.26 . 377
16.1.41 0.25 . 377
16.1.42 0.24 . 378
16.1.43 0.23 . 378
16.1.44 0.22 . 378
16.1.45 0.21 . 378
16.1.46 0.20 . 379
16.1.47 0.19 . 379
16.1.48 0.18 . 379
16.1.49 0.17 . 380
16.1.50 0.16 . 380
16.1.51 0.15 . 380
16.1.52 0.14 . 380
16.1.53 0.13 . 381
16.1.54 0.12 . 381
16.1.55 0.11 . 381
16.1.56 0.10 . 381

17 license 383
17.1 GNU GENERAL PUBLIC LICENSE . 383

18 contact 397

Python Module Index 399

Index 401

iv

seniority_list Documentation, Release 0.65

Quick links:

• The introductory article recently published1 through Cornell University

• YouTube2 channel

• Contact3

Welcome to seniority_list!

seniority_list is an analytical tool used when seniority-based work groups merge. It
brings modern data science to the area of labor integration, utilizing the powerful
data analysis capabilities of Python scientific computing. While the software was
developed with an initial focus on the airline industry, seniority_list is adaptable to
any industry or group where workers operate under a seniority system.

seniority_list offers an unbiased, numerical method to measure and compare the out-
come of proposed combined work group seniority lists. It is able to quantify how
the careers of workers would be affected under various seniority list orderings and
conditions in ways that have been difficult to measure previously.

seniority_list works by generating detailed data models (datasets) for various integra-
tion scenarios as described within a few basic Excel* spreadsheets prepared by the
user. The datasets may then be thoroughly analyzed with many customizable, built-
in visualization functions and statistical reports, or other user-defined methods. The
program is also able to construct and modify lists in near real time, with full outcome
results produced within seconds.

seniority_list does not attempt to predict the bidding preferences of individual em-
ployees. Instead, the program focus is on utilizing variables that are fixed or that can
be modeled in a quantifiable state, such as birth dates, jobs available, proposed list
orderings, furlough recall schedules, and special job assignment conditions or restric-
tions. The model is based on the assumption that all employees will bid for the highest
paying or highest ranked jobs at all times. In reality, employees will make choices
based on individual situations. However, the overall result of these individual choices
is a group average, ultimately constrained by list positioning. seniority_list models
the effect of list ordering combined with other customizable factors to provide useful,
objective information for interested parties.

1 http://scholarship.sha.cornell.edu/chrpubs/246/
2 https://www.youtube.com/channel/UCO7bj5LkSGFXUoqfp2wRMgQ
3 http://www.rubydatasystems.com/contact.html#contact

CONTENTS 1

http://scholarship.sha.cornell.edu/chrpubs/246/
https://www.youtube.com/channel/UCO7bj5LkSGFXUoqfp2wRMgQ
http://www.rubydatasystems.com/contact.html#contact

seniority_list Documentation, Release 0.65

A complete example case study including sample input data and analysis examples is
included with seniority_list.

Compared to tools which may have been used in the past, seniority_list offers:

• speed - easily modify parameters, rerun, and generate new comprehensive reports
within a few minutes

• flexibility - wider range of data analysis through numerous function parameters
and input file settings and options

• conditional modeling - accurately model “no bump, no flush” job bid-
ding/assignment, job assignment conditions and restrictions, changes in number
and category of jobs available for bid over time, and furlough and recall

• additional job granularity - part/full-time sections within common job compen-
sation levels permits additional precision

• financial studies - the model incorporates compensation data allowing individual
career and cumulative group analysis and comparison

• extensive statistical evaluation - the entire Python “scientific stack” may be uti-
lized to evaluate list and outcome metrics

• advanced visualization - an extensive range of chart types and features is readily
available through various Python and javascript libraries

• accuracy - designed with enterprise-level Python data science libraries and meth-
ods

• interactive list editing - the editor tool allows list adjustments to be made and the
results viewed within seconds

• easy adaptation - the design of the program and the simple data input interface
via spreadsheets makes it easy to use seniority_list with many different integra-
tion cases

• open source - all programming code is open and available for examination and
usage

Note: seniority_list was developed independently. The program is not affiliated with
any labor or industry organization and is licensed under the GNU General Public Li-
cense v3.0. Please direct consulting inquiries to rubydatasystems@fastmail.net.

Images in the web version of this documentation may be clicked for a full-size view.

*”Excel” is defined to mean the Microsoft Excel® spreadsheet program or any other
spreadsheet program which is compatible to .xlsx spreadsheet files, such as Calc4.

4 https://www.libreoffice.org/discover/calc/

2 CONTENTS

mailto:rubydatasystems@fastmail.net
https://www.libreoffice.org/discover/calc/

Part I

seniority_list

3

CHAPTER

ONE

FEATURES

• Examine and compare pre- and post-integration lists and calculated outcomes
with statistics and charts over a wide range of metrics, on an individual or
group basis

• Analyze integrated list outcome models using any of the multiple attributes
within the calculated datasets including time period selection, monthly and career
compensation, job level granularity, and position percentage within job levels

• Slice and group datasets by any dimension for additional insight into the real
effects of integration proposals

• Model and compare various pre- and post- job assignment special conditions
within proposed integrated lists

• Model job count changes on a per job category, per month basis

• Model furlough and recall

• Model an increase(s) in retirement age

• Incorporate delayed implementation of list integration with smooth transition
from separate to combined operation

• Switch easily between basic and enhanced job level studies

• Model “full flush” or “no bump no flush” rules for job assignment modeling

• Study financial compensation metrics with or without an assumed increase (or
decrease) in pay rates following contract expiration

• Analyze combinations of any number of employee groups

• Produce customized results for any subset of employee groups

• Generate complete summary reports for all proposals in a matter of minutes

• Share summary reports by copying a single output folder

• Recalculate datasets in near real-time when inputs are modified

• Experiment easily with “what-if” scenarios

5

seniority_list Documentation, Release 0.65

• Provide user data to seniority_list via a basic Excel spreadsheet interface

• Identify differences in data values which may exist between Excel spreadsheets
submitted by the parties

• Edit proposed lists intuitively using an interactive visual interface and see
the recalculated results almost immediately

• Build “hybrid” lists using a hierarchy of attribute priorities

• Reinsert inactive employees into the integrated list prior to producing a final list
result in Excel format

• Create/save/share publication-quality visualizations utilizing a variety of chart
types, format styles, and/or color mappings

seniority_list includes considerable analysis capability through a comprehensive set of
built-in plotting functions designed to be applied to the calculated datasets. The user
is free to explore the model datasets with custom functions as well.

6 Chapter 1. features

CHAPTER

TWO

PROGRAM NOTES

• seniority_list is written in the Python 35 programming language

• The project was initiated in October of 2015 with the first version complete in
April of 2016

• Software development is performed within the interactive Jupyter6 notebook and
the Sublime Text 37 editor.

• seniority_list primarily uses the pandas8 and NumPy9 libraries for computation

• The program uses the Python matplotlib10, seaborn11 and bokeh12 libraries for
data visualization

• Python pickling is utilized for fast dataset storage and retrieval

• This documentation website was produced with the Sphinx13 documentation gen-
erator along with the Shutter screenshot tool and the yEd Graph Editor14.

Basic knowledge of Python is required. The seniority_list program code is open-
source and available here15.

5 https://www.python.org/
6 http://jupyter.org/
7 https://www.sublimetext.com/
8 http://pandas.pydata.org/
9 http://www.numpy.org/

10 http://matplotlib.org/
11 https://stanford.edu/~mwaskom/software/seaborn/
12 https://bokeh.pydata.org/en/latest/
13 http://www.sphinx-doc.org/en/stable/#
14 https://www.yworks.com/products/yed
15 https://github.com/rubydatasystems/seniority_list/

7

https://www.python.org/
http://jupyter.org/
https://www.sublimetext.com/
http://pandas.pydata.org/
http://www.numpy.org/
http://matplotlib.org/
https://stanford.edu/~mwaskom/software/seaborn/
https://bokeh.pydata.org/en/latest/
http://www.sphinx-doc.org/en/stable/
https://www.yworks.com/products/yed
https://github.com/rubydatasystems/seniority_list/

seniority_list Documentation, Release 0.65

8 Chapter 2. program notes

CHAPTER

THREE

INSTALLATION

The software and program files necessary to run the seniority_list program are free to
download and use.

3.1 dependencies

Python 3*

Python libraries

bokeh16 *
bottleneck17 *
Ipython18 *
matplotlib19 *
numba20 *
numexpr21 *
NumPy22 *
openpyxl23 *
pandas24 *
python dateutil25 *
SciPy26 *

16 https://bokeh.pydata.org/en/latest/
17 https://pypi.python.org/pypi/Bottleneck
18 https://ipython.org/
19 http://matplotlib.org/
20 http://numba.pydata.org/
21 https://numexpr.readthedocs.io/en/latest/index.html
22 http://www.numpy.org/
23 https://openpyxl.readthedocs.io/en/stable/
24 http://pandas.pydata.org/
25 http://labix.org/python-dateutil
26 https://scipy.org/scipylib/

9

https://bokeh.pydata.org/en/latest/
https://pypi.python.org/pypi/Bottleneck
https://ipython.org/
http://matplotlib.org/
http://numba.pydata.org/
https://numexpr.readthedocs.io/en/latest/index.html
http://www.numpy.org/
https://openpyxl.readthedocs.io/en/stable/
http://pandas.pydata.org/
http://labix.org/python-dateutil
https://scipy.org/scipylib/

seniority_list Documentation, Release 0.65

seaborn27 *
xlrd28 *
xlsxwriter29 *
xlwt30 *

Jupyter notebook*

* included with anaconda31

seniority_list is designed to use the Jupyter Notebook32 (notebook) as its user interface.
The notebook is required to run the interactive editor.

The name “Jupyter” is a loose acronym referring to the Julia, Python, and R program-
ming languages. The notebook supports these and many other languages.

Information concerning the Jupyter notebook may be found here33. There are numer-
ous guides and tutorial videos online as well. Specific details pertaining to notebook
usage with seniority_list are located in the “user guide” section.

spreadsheet program

A spreadsheet program compatible with .xlsx files is required to handle the input data
and to read output from the program. Microsoft Excel® may be used with senior-
ity_list, but is not required. LibreOffice Calc34 is an open-source spreadsheet program
which works well with seniority_list. LibreOffice is free and may be downloaded
here35.

3.2 installing Python and Python libraries

Your computer must have the Python program and the associated Python libraries
(helper programs which perform specialized tasks) as listed above on your computer
to be able to run seniority_list. Nearly all of these requirements are met with one
download and installation of the Anaconda scientific platform. Navigate to this web-
page36 and select the Python 3.6 (or above) and 64-bit version appropriate for your
operating system. Install, using the default prompts. Detailed installation instructions
are found here37, if needed.

27 http://seaborn.pydata.org/
28 https://xlrd.readthedocs.io/en/latest/
29 https://xlsxwriter.readthedocs.io/
30 https://xlwt.readthedocs.io/en/latest/
31 https://www.anaconda.com/why-anaconda/
32 http://jupyter.org/
33 http://jupyter.org/
34 https://www.libreoffice.org/discover/calc/
35 https://www.libreoffice.org/download/download/
36 https://www.anaconda.com/distribution/
37 https://docs.anaconda.com/anaconda/install/

10 Chapter 3. installation

http://seaborn.pydata.org/
https://xlrd.readthedocs.io/en/latest/
https://xlsxwriter.readthedocs.io/
https://xlwt.readthedocs.io/en/latest/
https://www.anaconda.com/why-anaconda/
http://jupyter.org/
http://jupyter.org/
https://www.libreoffice.org/discover/calc/
https://www.libreoffice.org/download/download/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/install/

seniority_list Documentation, Release 0.65

Note: The anaconda download is 350-600mb depending on your operating system and
will require approximately 3gb of disk space when it is installed.

At this point, the Python program files necessary to run seniority_list have been in-
stalled. The next step is to download and install the actual seniority_list program.

3.3 installing seniority_list

The seniority_list program and sample data files are downloadable from a GitHub
repository. GitHub is a widely used hosting service for open source software projects.
A repository is a container which holds code and other files relating to a project. The
repository address for seniority_list is:

https://github.com/rubydatasystems/seniority_list.git

The easiest way to obtain the seniority_list program files from GitHub is to install the
git38 program, which has a built-in method to grab files from GitHub repositories with
one command line input.

git may be installed through the Anaconda platform. To install git, type or copy and
paste the following command into a terminal:

conda install git

Once git is installed, open a terminal and type or copy and paste the following com-
mand:

git clone https://github.com/rubydatasystems/seniority_list.
→˓git

The git program will retrieve and install all of the program and sample data files from
the GitHub repository (< 15mb).

Note: When running seniority_list with a Windows operating system, references to
the terminal apply to the Anaconda Prompt, opened from the Start Menu. Linux and
MacOS users may use the standard terminal prompt.

38 https://git-scm.com/

3.3. installing seniority_list 11

https://github.com/rubydatasystems/seniority_list.git
https://git-scm.com/

seniority_list Documentation, Release 0.65

12 Chapter 3. installation

CHAPTER

FOUR

OPERATIONAL OVERVIEW

4.1 abstract

The program models employee future career progression, reflecting standalone and
integrated list proposals, and stores this information in files known as datasets. The
datasets are analyzed and compared across a broad range of attributes. This process
provides objective, outcome-based analytics for integration decision-makers.

13

seniority_list Documentation, Release 0.65

Fig. 1: high-level dataset production diagram (click to enlarge)

14 Chapter 4. operational overview

seniority_list Documentation, Release 0.65

4.1.1 basics

The seniority_list program generates a data model built upon predictable variables
while isolating inputs that cannot be directly quantified.

In other words, certain aspects or parameters are known and unlikely to change, while
others are likely or sure to change. The factors that are known or predictable are
incorporated within the model calculations. The unpredictable factors are handled
equally (controlled) for each group so that their influence upon accuracy of the model
is minimized or eliminated.

Examples of predictable variables include job counts, retirement counts, and pay
scales. Unpredictable variables include individual bidding choices and future em-
ployee work leaves.

With the effect of the unpredictable variables removed, the results of the calculations
will be directly related to the predictable variable inputs. List order is the primary
predictable variable and has by far the most influence on the resultant datasets.

By default, seniority_list constructs the job level hierarchy in accordance with com-
pensation scales and assumes that all employees will continuously bid for the high-
est paying job. Consequently, the resultant employee career metrics produced by the
program reflect and focus primarily on the true effect of the ordering of proposed in-
tegrated lists. However, the data model job level hierarchy (used by the program job
assignment routines) may be set by the user to match the requirements of specific case
studies when necessary.

4.2 quick outline of seniority_list

The information below will cover the basics of seniority_list - an overview of how the program
works and what it does.

The “user guide” section of the documentation will provide much more detailed discussion and
instruction after basic program concepts are introduced here.

4.2.1 gather and prepare data

Before seniority_list can begin, it must be able to read specifically formatted input
from within designated project folders. Therefore, the first step for the user is to aquire
the required data and to format and store it properly.

seniority_list is designed to read all user input data directly from Excel spreadsheets.
This information includes general employee lists, compensation data, proposed inte-

4.2. quick outline of seniority_list 15

seniority_list Documentation, Release 0.65

grated lists, job assignment schedules, and many other miscellaneous user-specified
options.

During the initial phase of data preparation, any differences between input lists must be
resolved, such as the number and status of employees or the number of jobs available
in each category. The list_builder module contains functions useful for rapidly finding
differences between spreadsheets.

Excel workbook data sources

seniority_list uses four Excel workbooks as source data when creating the foundational
program files. Detailed guidance concerning the content and formatting requirements
of the input workbooks is presented in the “excel input files” section of the documen-
tation.

Each case study will require the following four workbooks to be placed within a case-
specific folder located within the program’s “excel” folder.

master.xlsx

• This is the workbook which contains general employee data. This single-
worksheet workbook contains approximately 10 columns of data for every
employee.

pay_tables.xlsx

• The compensation information will likely require the most formatting in
terms of the worksheet layout and data preparation. Specific worksheet nam-
ing and formatting is required for two worksheets, one containing hourly pay
rates for each job level/longevity combination, and another listing the total
monthly pay hours for each job category.

proposals.xlsx

• List order proposals are stored in the third workbook with a separate work-
sheet for each ordering proposal. These worksheets contain only two
columns: order number and employee number (empkey).

settings.xlsx

• This workbook stores data related to program options and schedules. It also
contains some plotting function values concerning labels and colors for out-
put charts.

16 Chapter 4. operational overview

seniority_list Documentation, Release 0.65

other list order sources

List proposals submitted by parties are normally stored and read from the Excel pro-
posals.xlsx input file.

There are two other ways to prepare and provide list order input to the program:

1. New list ordering may be generated by utilizing the functions within the
list_builder script.

2. Modifications to any list ordering may be accomplished by utilizing the interac-
tive list editor tool.

4.2.2 build the basic program files from the input data

seniority_list begins by creating certain files needed by the program for dataset gener-
ation and other operations.

As mentioned above, seniority_list is able to directly read and write Excel files. How-
ever, it is magnitudes faster to use a different format optimized for Python when re-
trieving and storing data for internal program operation. Therefore, each input Excel
file is read once, converted to a pandas dataframe, and then stored as a serialized
“pickle” file for further use within seniority_list.

seniority_list also modifies the structural format of the input files as necessary during
the conversion process. The format modification allows for fast and efficient data
indexing and access during program operation. For example, the compensation data
will be converted from a wide-form, spreadsheet-style table to an indexed long-form
format, while the master list file will be stored in a nearly identical row and column
format as the original.

A few helper program files derived from the input files are calculated and stored during
this process as well.

4.2.3 create the “skeleton”

Note: pandas (with a small “p”) is a powerful Python library (add-on program) used
for data analysis work. pandas, along with a number of other specialized Python li-
braries, is used extensively within the seniority_list code base. The primary data struc-
ture provided by the pandas library is the dataframe. The dataframe can be described
as an in-memory tabular structure similar to a spreadsheet, but far more capable and
powerful, especially when combined with other Python tools.

4.2. quick outline of seniority_list 17

seniority_list Documentation, Release 0.65

A dataset is the calculated data model resulting from a particular integrated list order-
ing proposal and its associated conditions. The skeleton provides the starting point or
frame for the creation of a complete dataset. Each case has one unique skeleton, just
as each case has its own set of employees and lists.

The skeleton is a “long-form” pandas dataframe containing calculated data derived
from the basic “short-form” master list data.

• “Short-form” refers to a dataset containing static list data, without any future
progression calculations. It’s length is equal to the number of employees.

• “Long-form” refers to a dataset that contains information for every month for
each employee remaining on the list (not retired) for that month.

The skeleton contains many columns of data, most of which is general employee data
relating to specific employees and months. All of the pre-calculated information con-
tained within the skeleton is independent of and unaffected by changes in list order.
The data includes such things as hire date, month number, employee group number,
age, and retirement date.

The skeleton forms the foundation or starting point for the production of all datasets
pertaining to a particular case. The number of rows in the skeleton and in the final
dataset is the same, but many additional columns of calculated data will be added
to the skeleton as a dataset is formed. Because each particular proposal orders the
integrated list differently, prior to each proposal dataset generation, the skeleton is
first reordered to match the order of the appropriate proposal (model) list order before
any calculations begin.

The case-specific skeleton provides a common source of pre-calculated, order-
independent data which serves as a starting point for each large dataset generation
process. The skeleton must only be sorted to match a specific proposal ordering each
time a dataset is generated.

4.2.4 calculate standalone dataset

“Standalone” refers to an unmerged, or independent employee group, and normally
relates to modeling each employee group separately as if no merger had occurred.

The skeleton file contains information for all of the employee groups.

Information pertaining to each separate group may be extracted from the skeleton
file quite easily and processed independently. Because list order within each native
group is static, it is a fairly straightforward task to compute the standalone datasets as
compared to an integrated dataset computation.

Though the job assignment process is less demanding with separate groups, there are
other conditions which complicate matters. If there are any pre-existing special rights
to jobs within one or more of the employee groups, they must be honored and applied.

18 Chapter 4. operational overview

seniority_list Documentation, Release 0.65

Additionally, the number of jobs within each job level will likely fluctuate over time.
This directly affects job assignment. Finally, furloughs and recalls must be handled
properly according to job count changes and recall schedules.

The standalone dataset is created as a pandas dataframe and is stored in a serialized
pickle file format.

4.2.5 calculate integrated order-dependent dataset

The production of an integrated dataset is more complex than the standalone datasets.

The integrated datasets are list order dependent. As mentioned above, before any
work can begin, an appropriate list order must be selected and the skeleton file sorted
accordingly. A properly sorted skeleton file serves as the framework for an integrated
dataset.

An integrated list typically introduces multiplex requirements into the dataset calcula-
tion process.

A standard provision when integrating a workforce is that an employee will be able to
keep a job held prior to a merger, even if the integrated list places that employee in a
position that would not permit it. This provision is known as “no bump, no flush”.

Quite often, due to differences in demographics, hiring patterns, and job opportunities,
“fences”, or conditions and restrictions are applied prospectively to the operation of a
combined seniority list. These fences may place a cap or floor on the number of jobs
which may be held by employees from one or more of the original groups, provide
some sort of ratio assignment process, or apply some other corrective action to ensure
an equitable outcome.

It is also common to see a time span between the “official” merger date and the actual
implementation of an integrated seniority list. This delayed implementation affects the
future operation of the list.

seniority_list is able to incorporate all of these factors along with pre-existing job
assignment conditions, job count changes, furlough and recall schedules, and com-
pensation schedules when calculating integrated datasets.

As with the standalone dataset, the integrated dataset(s) will be pandas dataframes,
written to disk as serialized pickle files.

The integrated datasets contain one row for each employee for every month within
the model. This means that the datasets may be fairly large. While the exact size
depends on the demographics of the employees, an initial list with 12,000 employees
will typically produce a dataset with over 1.5 million rows containing 34 columns of
data. For reference, as of version 0.62, the time required to produce one dataset of that
size and write it to disc is under 3 seconds with a linux desktop computer equiped with
a relatively fast processor (i7) and a solid state drive. Processing time will be more or

4.2. quick outline of seniority_list 19

seniority_list Documentation, Release 0.65

less depending on the computer hardware and operating system utilized when running
the program.

4.2.6 analyze results

Once the datasets have been produced, the user is free to explore them using many
of the built-in methods of Python and the “scientific stack” libraries including pandas,
NumPy, SciPy, and others. The datasets are stored as files which may be converted
to other types of files for analysis within other programs. Interactive exploration and
visualization of the dataset is readily available through the use of the Jupyter note-
book or an Ipython session. The Jupyter notebook is the recommended interface to
seniority_list for all users due to its excellent interactive features.

seniority_list includes many built-in plotting functions making it relatively simple to
visually explore and contrast multiple attributes of the datasets. Most of these func-
tions accept a variety of inputs allowing a wide range of analysis. The included
STATIC_PLOTTING.ipynb and INTERACTIVE_PLOTTING.ipynb notebooks
demonstrate many of these functions.

The standard built-in charts are produced by a Python library called matplotlib39, and
another called seaborn40, which is a charting library built on top of matplotlib with a
focus on statistics. Interactive charts and the editor tool are powered by the bokeh41

library which provides users with real-time selection, filtering, and animation of the
dataset results.

seniority_list also includes a reports module with functions that produce summarized
statistical data from all calculated datasets for the current case study. The generated
data is presented in tabular form via excel spreadsheets and/or visually through nu-
merous chart images. The summary reports offer a high-level view into integrated list
outcomes across a limited set of attributes for quick familiarization and comparison
of proposal outcomes. The REPORTS.ipynb notebook included with the program
provides an example of the report generation process.

39 http://matplotlib.org/
40 https://stanford.edu/~mwaskom/software/seaborn/
41 https://bokeh.pydata.org/en/latest/

20 Chapter 4. operational overview

http://matplotlib.org/
https://stanford.edu/~mwaskom/software/seaborn/
https://bokeh.pydata.org/en/latest/

seniority_list Documentation, Release 0.65

4.2.7 modify list order with the editor tool (optional)

Fig. 2: list editing process (click to enlarge)

Initial dataset analysis will likely reveal certain issues of inequity related to a particular
list order proposal. The editor tool was designed to allow adjustment of proposed list
order through an interactive process.

4.2. quick outline of seniority_list 21

seniority_list Documentation, Release 0.65

Fig. 3: the editor tool interface

An attribute differential comparison or actual values chart is used to quickly reveal
equity distortions within an integrated dataset and to identify where modification of list
order may be necessary to minimize excessive gains or losses for a specific employee
group(s) or to more evenly distribute opportunities within the combined workforce.

A section of an integrated list may be edited by using slider controls within the editor
tool to position vertical lines on either side of the section. An algorithm within the
editor tool is then utilized to “slide” or “squeeze” the members from one of the original
employee groups up or down the list, creating a new modified order, while maintaining
proper relative ordering within each employee group. The movement of an employee
group relative to another employee group(s) within an integrated seniority list not only
changes the relative ranking of employee groups to one another but also effectively
changes the distribution of jobs over the life of the data model, which in turn affects
other outcome dataset metrics.

22 Chapter 4. operational overview

seniority_list Documentation, Release 0.65

The relative positioning of each employee group may be precisely adjusted with the
editor tool so that calculated attribute differentials (gains or losses) are minimized, or
observed inequitable attribute outcomes are reduced or eliminated.

The edit process may be repeated and adjusted as necessary to selected sections of
integrated list until the equity distortion(s) are reduced or eliminated.

4.2.8 create lists with list_builder (optional)

The list_builder module contains functions allowing custom list construction from the
master file input. “Hybrid” lists may be built by ranking and sorting the master list
according to a combined weighted attribute product. Any combination of attributes
and weightings may be incorporated to contruct lists.

Note: “Hybrid” lists must only be considered as a starting point in nearly all cases.
This is due to the simple fact that a consistent formula applied to combine lists with
inconsistent attributes, such as demographics and hiring patterns, will invariably lead
to inequitable outcome results. An unmodified hybrid style list solution would be
acceptable only in the rare case when employee groups are nearly identical in terms of
attribute distribution.

4.2.9 reinsert inactives

Inactive employees are defined as employees who are not occupying or bidding for a
position which would otherwise affect the job opportunities for those employees below
him/her on the seniority list. Examples of inactive employees may include those with
a status of medical, military, or supervisory leave.

Because inactive employees do not bid for jobs and have no effect on the operation of
a seniority list, they are removed from the list prior to the dataset calculation process.
While many on inactive status will return to active status, the assumption is made that
other employees will do the opposite and provide a counterbalance.

Once a final integrated list order has been determined, the inactive employees must be
reinserted into the overall list.

The inactive employees are reinserted using the join_inactives script. The inactives
may be inserted into the integrated list by locating them next to an employee from
their native group who is either just senior or just junior to them. The final product of
this process is converted to an Excel spreadsheet, placed within the reports folder.

4.2. quick outline of seniority_list 23

seniority_list Documentation, Release 0.65

4.3 interacting with seniority_list

seniority_list was designed to use the browser-based Jupyter notebook as its interface
in all areas of functionality. The Jupyter notebook42 has a relatively shallow learning
curve while yielding vast returns.

seniority_list has been tested using FireFox and Chrome (or Chromium) browsers.
Chrome offers better performance when using seniority_list and is recommended.
FireFox will work with the program, but will lag somewhat when displaying complex
visualizations. Other browsers have not been tested.

There are five notebook files included with seniority_list to help the user get started.
Please refer to the user guide for more information.

42 http://jupyter.org/

24 Chapter 4. operational overview

http://jupyter.org/

CHAPTER

FIVE

USER GUIDE

This user guide will begin with a general discussion of the foundational elements of
the program followed by a detailed instruction manual.

Please read the “operational overview” section prior to tackling this user guide.

5.1 general

The programmatic goal of seniority_list is to create relatively large data models which
can be analyzed and compared. The program orders an integrated list as directed and
then uses multiple algorithms to calculate the resultant metrics.

The seniority_list program is written in a procedural style and is designed to employ
the Jupyter notebook as the user interface. Therefore, to use seniority_list, first launch
the Jupyter notebook from the terminal (PowerShell is recommended if running Win-
dows):

jupyter notebook

A new browser window will open with a presentation of files and folders. Navigate
to the seniority_list folder and then to the desired notebook file or initialize a new
notebook as desired. The notebook interface provides a platform from which to run
the program scripts and functions. Detailed operational instructions are located in the
“notebook interface” section below.

An analysis of a particular integration will be referred to as a “case study” within the
seniority_list documentation, and the particular files, data, etc. relating to that case
study will be described as being “case-specific”.

Case-specific Excel input files are selected by the program for processing as
directed by a case_study input variable read initially as an argument to the
build_program_files.py script. The Excel input files must be formatted and located
in a user-created, case-study-named folder within the excel folder so that the program

25

seniority_list Documentation, Release 0.65

can find and process them. In other words, the case_study input variable will be the
same as the name of the folder containing the input Excel files and determines which
input files will be used to create the foundational program files.

The input files consist of four Excel files. The actual names of the Excel input work-
books and the spreadsheets within them remain the same for all case studies. Only
the name of the container folder changes and each case study has its own folder. This
system allows many different case studies to exist within the program, and makes
it a trivial excercise to switch between case studies, simply by changing the “case”
argument to the build_program_files.py script when loading a new study into the
program.

After the case-specific Excel files are in place, seniority_list is able to rapidly generate
the datasets using a series of scripts as follows (simplified):

First, foundational program files are generated (pandas dataframes) and are
stored as serialized pickle files within the auto-generated dill folder with
the build_program_files.py script.

Next, a relatively long pandas dataframe is created from the freshly-created
program files. This file is know as the “skeleton” file because it serves as the
frame for all of the datasets which will be generated by the program. The
skeleton file contains employee data which remains constant regardless of
list order. The skeleton file is created by running the make_skeleton.py
script.

Finally, datasets are generated with two scripts, one for the standalone data
and one for the integrated data, standalone.py and compute_measures.py.
The integrated dataset creation process will be repeated for each list order-
ing proposal. Both the standalone and integrated datasets will incorporate
specific options and scenarios set by the user.

The process to produce the datasets may be rapidly accomplished utilizing the
RUN_SCRIPTS notebook included with the program, with modifications appropriate
for a particular case study. When the program is initially downloaded, the notebook
is set up properly for use with the sample case study included with the program. The
RUN_SCRIPTS notebook serves as a template for use within actual user case studies,
as do the other program notebooks.

seniority-list includes many visualization functions which have been designed specif-
ically for seniority list analysis. These functions are located within the mat-
plotlib_charting and interactive_plotting modules. Most of the plotting functions are
demonstrated with the sample STATIC_PLOTTING notebook.

An array of summary statistical data formulated from all outcome datasets may be gen-
erated with functions within the reports module. The REPORTS notebook contains
code cells to demonstrate the summary reports functionality of seniority_list.

The editor tool allows list order analysis, editing and feedback through an interactive

26 Chapter 5. user guide

seniority_list Documentation, Release 0.65

interface. The EDITOR_TOOL notebook is included with the program and will start
the editor when it is run.

seniority_list is also able to rapidly produce “hybrid” lists with proportional weighting
applied to any number of attributes through functions found within the list_builder
module. A sample hybrid list is created when the RUN_SCRIPTS notebook is run.

5.1.1 program components and file structure

This section describes the files which make up the seniority_list program prior to and
after running the program scripts.

The file components of seniority_list may be categorized as follows:

original files

• function modules:

– functions.py - dataset generation, editor helper routines

– matplotlib_charting.py - static charting functions

– interactive_plotting.py - interactive charting functions

– converter.py - convert basic job data to enhanced job data

– list_builder.py - formulate list proposals

– reports.py - generate basic summary reports

– editor_function.py - editor tool

• scripts

– build_program_files.py - create and format intial program dataframes from
input data files

– make_skeleton.py - generate framework for datasets

– standalone.py - non-integrated dataset production

– compute_measures.py - integrated dataset production

– join_inactives.py - finalize list with inactives

• Jupyter notebooks

– RUN_SCRIPTS.ipynb - generate program files and datasets

– STATIC_PLOTTING.ipynb - create example data model visualizations

– INTERACTIVE_PLOTTING.ipynb - example interactive charts

– REPORTS.ipynb - generate high-level report, visual and tabular

5.1. general 27

seniority_list Documentation, Release 0.65

– EDITOR_TOOL.ipynb - run the interactive editor tool

• Excel input

– master.xlsx - foundational employee data

– pay_tables.xlsx - compensation data

– proposals.xlsx - list order proposals

– settings.xlsx - options and settings

generated files (all are dataframes except the .xlsx files and the dictionaries)

• datasets (pandas dataframes stored as serialized pickle files)

– ds_<proposal name>.pkl - integrated dataset(s) generated from proposed
list orders

– standalone.pkl - dataset generated with non-integrated results

• reports

– pay_table_data.xlsx - computed compensation data (Excel format)

– final.xlsx - final list (Excel format)

– final.pkl - final list (dataframe format)

– ret_stats.xlsx* - retirement statistics

– annual_stats.xlsx* - annual statistics

– ret_charts* - retirement statistics chart images folder

– annual_charts* - annual statistics chart images folder

*generated with the reports module

• dictionaries

– dict_settings.pkl - options and settings

– dict_colors.pkl - colormaps for plotting

– dict_attr.pkl - dataset attribute descriptions

– dict_job_tables.pkl - monthly job counts

– editor_dict.pkl - initial values for editor tool

• indexed pay tables

– pay_table_basic.pkl - basic job levels monthly pay

– pay_table_enhanced.pkl - enhanced job levels monthly pay

• proposals

28 Chapter 5. user guide

seniority_list Documentation, Release 0.65

– p_<proposal name>.pkl - list order proposals

• misc.

– master.pkl - employee data

– case_dill.pkl - single-value dataframe with case study name

– last_month.pkl - percentage of retirement month working

– proposal_names.pkl - the integrated list order proposals

seniority_list includes a sample integration case study for simulating an integration
involving three employee groups. The sample case_study is named “sample3”. The
sample3 folder and its contents within the excel folder contain the sample case study
data.

Note: The reference to the seniority_list folder throughout the documentation refers
to the seniority_list folder within the parent seniority_list folder.

seniority_list/seniority_list/

The images below display the file structure or “tree” views of the files and folders
within the seniority_list folder of the program. The seniority_list folder contains all
of the code used to actually operate the program. There are other files and folders
located within the seniority_list folder which are of an administrative nature and have
been removed from the tree views for clarity (.ipynb_checkpoints and __pycache__
folders).

The next several images will highlight the new files created as the various scripts are
run. The specifics concerning the purpose and product of the various scripts will be
explained later.

The left image below shows the tree structure of the program as it exists when initially
downloaded.

The file structure of seniority_list expands significantly when the
build_program_files script is run. In the right image below, new files are shown
within the red boxed areas, and new folders are shown within the green boxes. Most
of the new files are pandas dataframes which have been converted to a “pickle” (.pkl
extension) file format, a format which is optimized for fast storage and retrieval. All
of the “pickle” files in the dill folder are cleared and replaced when a new case study
is selected and calculated.

Notice a new folder, reports, has been created which in turn contains another new
folder with the case study name (“sample3” in this case). This folder contains a new
Excel file, pay_table_data.xlsx, pertaining to calculated compensation information.

5.1. general 29

seniority_list Documentation, Release 0.65

The fact that there are three files in the dill folder beginning with “p_” indicates that
three integrated list proposals were read from the Excel input file, proposals.xlsx.

initial program files after build_program_files script

The framework upon which datasets are built for a particular case study is the “skele-
ton” file. The skeleton file is created with the make_skeleton.py script. The output is
stored as skeleton.pkl within the dill folder, indicated in the lower left image.

Next, a “standalone” or unmerged dataset is generated which contains information for
each employee group as if a merger had not occurred. This data is all in one file,
standalone.pkl, as indicated in the lower right image.

30 Chapter 5. user guide

seniority_list Documentation, Release 0.65

after make_skeleton script after standalone script

The integrated list datasets are produced with the compute_measures.py script, run
separately for each integrated list proposal. The dataset file names begin with “ds_”
(lower left image).

The final.xlsx and final.pkl files shown in the lower right image were generated by
the join_inactives.py script. Normally these files would be created at the end of the
entire analysis process when a final integrated list has been produced and the inactive
employees are reinserted into the new combined list. These files contain the same
information, only the file format is different - one is a pandas dataframe and the other
is an Excel file generated for user convenience.

5.1. general 31

seniority_list Documentation, Release 0.65

after compute_measures script after join_inactives script

The program includes four sample Jupyter notebook files which are indicated with the
red boxes below and left.

The folders within the seniority_list folder are indicated in the lower right image.

The dill folder contains the generated program files which are used by the various
scripts to make the model datasets. The datasets are also stored within the dill folder
once they are produced. The names and the quantity of files within the dill folder
will be the same for all case studies, with the exception of case-specific proposal files
(starting with “p_”) and case-specific dataset files (starting with “ds_”. The actual
contents of the program files will be different for each case.

The excel folder contains a folder for each existing case study. In this view, there is

32 Chapter 5. user guide

seniority_list Documentation, Release 0.65

only one folder, (sample3), containing the four Excel input files. If other case studies
existed, there would be additional folders within the excel folder, each containing
four Excel input files with the same names, but with the contents of the Excel file
worksheets modified as appropriate for each case.

The reports folder will contain an auto-generated folder for each case study. The
Excel files located within these folders are created by the program.

the 5 sample notebook files program folders

The user input files are marked in the image below and left. The four case-specific
Excel files are located within a folder named after the case study (sample3) within the
excel folder.

The tree view below right highlights the program scripts in red and the function mod-

5.1. general 33

seniority_list Documentation, Release 0.65

ules in green. The program scripts perform most of the work of seniority_list while
the function module components are used within the scripts and the Jupyter notebooks
to perform specific actions.

user input files scripts and function modules

34 Chapter 5. user guide

seniority_list Documentation, Release 0.65

5.2 program flow

5.2.1 input data

seniority_list reads user-defined input data from four Excel workbooks. These input
files must be formatted and located properly for the program to run.

Note: The following discussion provides information concerning how the input files
fit in with program flow. Please see the “excel input files” page of this documentation
for complete descriptions and formatting requirements of the Excel input files.

The four Excel input files:

• master.xlsx

– basic employee data file

– contains data for all employee groups within one worksheet

• proposals.xlsx

– order and empkey (unique number derived from employee group number
and employee number)

– contains one worksheet for each proposed integrated list order

• pay_tables.xlsx

– pay table for basic job levels

– basic and enhanced monthly pay hours, descriptive job codes, full-time vs.
part-time job level percentages

• settings.xlsx

– scalar options (single value variables)

– tabular data sources to be converted to various lists and dictionaries

setup workflow summary

The basic idea is to use existing Excel input files workbooks as an easy
starting point or template for new case study inputs.

1. Navigate to the excel folder within the seniority_list folder.

2. Copy the sample3 (or any other case study folder) and paste it right
back into the same folder.

5.2. program flow 35

seniority_list Documentation, Release 0.65

3. Rename the new folder as the new case study name.

4. Modify the content of the workbooks within the new case study
folder to match the new case study parameters.

Input file basics

The program requires input from four prepared Excel workbooks contain-
ing employee data, pay scales, job counts, proposed integrated list order-
ings, and other program data and options information.

Examples of input information:

- job counts per job category per employee group
- changes in job counts over time
- colors to be used when plotting data
- use a constant retirement age or calculate an increase at some point
- an option to use basic or enhanced job levels
- whether or not to assume a delayed implementation of the integrated list

Input file naming and location

Data for many merger studies may be stored within seniority_list at the
same time. A naming convention applied to the folders containing the Excel
input files ensures that the program uses the correct data for the selected
integration study.

The user will choose a case study name when preparing to analyze an em-
ployee group merger with seniority_list. For purposes of discussion, we
will assume there are two companies involved in a hypothetical merger,
“Southern, Inc.” and “Acme Co.”, and the case name chosen is “south-
ern_acme”. This name will become the name of the folder which will con-
tain the four case-specific Excel input data files.

The recommended way to create the input files for a new case study is to
navigate to the excel folder, copy an existing case study input folder (the
sample3 folder if no other case studies exist), then paste it back into the ex-
cel folder and rename it with the desired case study name (“southern_acme”
in this case.) The user will then modify the contents of the workbooks
within the case study folder to match the actual parameters of the new case
study as described within the “excel input files” section of the documenta-
tion.

The names of the four files located within a case study folder are the same
for all case studies: “master.xlsx”, “pay_tables.xlsx”, “proposals.xlsx”, and

36 Chapter 5. user guide

seniority_list Documentation, Release 0.65

“settings.xlsx”. These file names should not be modified because the pro-
gram will look for them specifically regardless of the case study name.

By far, the most of the effort involved when utilizing seniority_list will be
directed toward preparing Excel input data for consumption by the program.
However, once everything is set up, minimal effort is required to analyze
multiple integration scenarios.

Selecting a case study

With the input files in place and loaded with proper information, the user
selects an integration study for analysis by manually setting the “case” ar-
gument for the build_program_files.py script. The “southern_acme” case
study has been selected in the example below (Jupyter notebook cell com-
mand):

%run build_program_files southern_acme

This one argument will set up the program to select the proper source files
for all of the calculations used to produce multiple data models correspond-
ing to designated integration proposals. The user may easily switch be-
tween completely different case studies simply by changing the single ar-
gument to the build_program_files.py script and then rerunning the pro-
gram. If the user desired to run the sample case study after analyzing the
“southern_acme” case, he/she would rerun the script as follows:

%run build_program_files sample3

After running the build_program_files script, the other scripts involved
in building the datasets must be run as well, as described in the sections
below. The included RUN_SCRIPTS notebook offers a template to make
this process easy for any case study, with simple modification. This will be
explained within the “operation” section below.

The input Excel files and the files generated by the build_program_files
script relating to a specific case study provide the foundational information
for the main dataset generation process.

5.2.2 build program files

Processing script: build_program_files.py

This script creates the necessary support files from the input Excel files required for
program operation. The input files are read from the appropriate case study folder
within the excel folder.

The build_program_files.py script requires one argument which designates the case

5.2. program flow 37

seniority_list Documentation, Release 0.65

study to be analyzed. That argument directs the script to look for the input files within
a folder with the same name as the argument, in the excel folder.

For example, to run the script from the Jupyter notebook using the sample case study,
type the following into a notebook cell and run it:

%run build_program_files sample3

The files and folder created with build_program_files.py are as follows:

from the input Excel files:

• from proposals.xlsx:

– proposal_names.pkl

– p_<proposal name>.pkl for each proposal

• from master.xlsx:

– master.pkl

– last_month.pkl

• from pay_tables.xlsx:

– pay_table_basic.pkl

– pay_table_enhanced.pkl

– pay_table_data.pkl

• from settings.xlsx

– dict_settings.pkl

– dict_attr.pkl

created with this script without reference to the input files:

• from code within script:

– case_dill.pkl

– editor_dict.pkl

– dict_color.pkl

– case-study-named folder in the reports folder (if it doesn’t al-
ready exist)

38 Chapter 5. user guide

seniority_list Documentation, Release 0.65

descriptions of the created files:

All images may be clicked to enlarge.

The case_dill.pkl file is a tiny dataframe (only one value) containing the name of the
current case study, as set by the “case” argument of the build_program_files.py script.
It is referenced by the join_inactives.py script when writing the final.xlsx file within
the appropriate case study folder, in the reports folder.

Fig. 1: case_dill mini-dataframe

The proposal_names.pkl file is a very small dataframe which contains the names of
the various list order proposals, obtained from the worksheet names within the propos-
als.xlsx input file. This file is referenced by many other functions when referencing
list order proposals.

Fig. 2: proposal_names mini-dataframe

The editor_dict.pkl file is used to set the initial values in the editor tool interactive
widgets (sliders, dropdown boxes, etc.) and is modified by the editor tool when in use.

5.2. program flow 39

seniority_list Documentation, Release 0.65

Fig. 3: editor_dict dictionary for editor tool settings (sample values)

40 Chapter 5. user guide

seniority_list Documentation, Release 0.65

The master.pkl file is a pandas dataframe version of the master.xlsx input workbook
employee list data. The dataframe structure is the same as the worksheet structure
with the addition of a calculated “retdate” (retirement date) column.

Fig. 4: master file excerpt

The dict_attr.pkl file is a dictionary containing dataset column names as keys and
descriptions of those names as values, as delineated on the “attribute_dict” worksheet
within the settings.xlsx workbook. The descriptions are used for chart labeling.

5.2. program flow 41

seniority_list Documentation, Release 0.65

Fig. 5: attribute dictionary

The dict_color.pkl file is a relatively large dictionary containing matplotlib colormap
names to color lists key-value pairs. The color lists are in [red, green, blue, alpha]
format. The color dictionary is discussed in the “visualization” section below.

42 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 6: color dictionary excerpt, rgba format

The dict_settings.pkl file is a dictionary containing program options and data necessary
for seniority_list to operate. Nearly all of the data from the settings.xlsx input file ends
up in this dictionary, either in native format or as a modified format as a calculated
derivative or reshaped as elements within a Python data structure (or both).

5.2. program flow 43

seniority_list Documentation, Release 0.65

Fig. 7: settings dictionary excerpt

The dict_job_tables.pkl file is a dictionary containing data related to monthly job
counts. The dictionary values are numpy arrays pertaining to both standalone and
integrated employee groups, incorporating changes in the number of jobs over time
as described with the job_changes worksheet within the settings.xlsx input file. These
arrays are referenced during the job assignment and analysis routines.

44 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 8: one of multiple arrays within the job table dictionary

A dataframe is created from each proposed integrated list order as indicated on
the worksheets within the proposals.xlsx workbook input file. (p_p1.pkl, p_p2.pkl,
p_p3.pkl with the sample case)

Fig. 9: proposal file excerpt

5.2. program flow 45

seniority_list Documentation, Release 0.65

The pay_table_basic.pkl and pay_table_enhanced.pkl files are calculated indexed
compensation dataframes derived from the pay_tables.xlsx Excel input file. These
files provide rapid data access during the dataset creation routine.

“Indexed” means that the index of the dataframe(s) contains a unique value
representing the year, longevity step, and job level. The only column
(“monthly”) contains the corresponding monthly compensation value.

The “ptindex” (pay table index) contains year, longevity, and job level information.
The last two whole digits represent the job level. In this example case, there are 8
basic levels and 16 enhanced levels.

indexed basic pay table indexed enhanced pay table

A decimal representing the portion of an employee’s final work month may be cal-
culated using retirement date and the number of days in the retirement month. This
decimal is calculated for all employee retirement dates and stored in last_month.pkl
(the “last_pay” column below) to be used when calculating dataset career earnings
attribute.

46 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 10: last_month file excert

The join_inactives.py script reinserts inactive employees into a combined seniority
list order and creates two files containing the final integrated seniority list. Both files
are the same - one is a pandas dataframe (final.pkl) and the other is written to disk in
the reports folder as an Excel workbook (final.xlsx). See the “building_lists” section
below for more information concerning the join_inactives.py script.

Fig. 11: final file excerpt, dataframe version

5.2. program flow 47

seniority_list Documentation, Release 0.65

pay_table_data.xlsx (program-generated workbook)

seniority_list calculates total monthly compensation tables which are the source for
the pay_table_enhanced.pkl file and pay_table_basic.pkl files (above) used when gen-
erating compensation attributes within datasets. The monthly compensation data may
be reviewed on one of the worksheets from the auto-generated pay_table_data.xlsx
workbook within the reports folder. (Note that a furlough pay level has been added
by the program for each year.)

Fig. 12: pay_table_data.xlsx example, “basic ordered” worksheet

The expanded monthly compensation table for enhanced job levels is generated by
seniority_list automatically. The job level sort (ranking) will be consistent for all years
and will be based on a monthly compensation sort for a year and longevity selected by
the user.

“Enhanced” job levels delineate between full- and part-time positions within each ba-
sic job level. See the discussion within the “pay_tables.xlsx” section on the “excel
input files” page of the documentation for further explanation.

48 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 13: pay_table_data.xlsx example, “enhanced ordered” worksheet

The “job_dict” worksheet information serves as the calculated source for the basic-to-
enhanced job level conversion process when required.

Fig. 14: pay_table_data.xlsx example, “job_dict” worksheet

Other worksheets are contained within the pay_table_data.xlsx workbook within the
reports folder for user review.

5.2.3 creating the static ‘skeleton’ file

Processing script: make_skeleton.py

Columns created:

['mnum',
'idx',
'empkey',

(continues on next page)

5.2. program flow 49

seniority_list Documentation, Release 0.65

(continued from previous page)

'mth_pcnt',
'date',
'year',
'pay_raise',
'fur',
'eg',
'retdate',
'doh',
'ldate',
'lname',
'line',
'sg',
'ret_mark',
'scale',
's_lmonths',
'age']

Fig. 15: skeleton file excerpt

To run the script from the Jupyter notebook, type the following into a notebook cell
and run it:

%run make_skeleton

The skeleton.pkl file is a dataframe containing employee data that is independent of
list order, meaning that such information is a constant for each individual employee
throughout any data model. An example of this would be employee age.

The skeleton file can initially be in any integrated order, but the members of each
employee group must be in proper relative order to each other. In other words, the sort
order of the members from any employee group must be maintained no matter how
the employee groups are meshed together in an integrated list.

The skeleton file is a relatively “long” dataframe. With the sample case study of 7500
total employees, it is almost one million rows long. The skeleton file is organized by
data model month (“mnum”), starting with the data for the first month and sequentially
“stacking” sequential month data below. The size (number of rows) of the data for each

50 Chapter 5. user guide

seniority_list Documentation, Release 0.65

month is directly related to the number of employees who remain active (non-retired)
in that month.

Much of the information in the skeleton file is constant from month-to-month, such as
date of hire and last name. Other data does change, such as date and age.

The index of the skeleton is purposefully a duplicate index of the empkeys col-
umn(unique employee ID).

Because the skeleton file contains data which is unaffected by the order of an integrated
list, it may be calculated once and simply retrieved and resorted to form the basis of
subsequent integrated list datasets.

The skeleton file is utilized in the production of both standalone and integrated
datasets.

5.2.4 creating datasets

Processing scripts: standalone.py, compute_measures.py

5.2. program flow 51

seniority_list Documentation, Release 0.65

Fig. 16: high-level dataset creation flowchart

52 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Dataset creation is the heart of seniority_list, producing a collection of metrics calcu-
lated from a particular integrated list ordering proposal, including any job assignment
conditions associated with that proposal, or from standalone list data. The datasets be-
come the source for the objective analysis of potential integrated lists and associated
conditions. Integrated datasets are generated using the compute_measures.py script.
Standalone datasets are generated using the standalone.py script.

Fig. 17: integrated dataset file excerpt

Note that seniority_list assigns list percentages and job ranking numbers near zero to
the best, most “senior” positions, and higher percentages and numbers to less desir-
able, most “junior” positions.

Integrated datasets

Integrated datasets build upon a properly-sorted skeleton file. Integrated dataset con-
struction is highly dependent on list order.

The program uses the proposed integrated list orderings from the proposals.xlsx work-
book to sort the framework for a proposal dataset prior to calculating all of the various
attributes which are utilized for analysis. seniority_list may also process list orderings
from other sources (the editor tool and the list_builder.py script).

The technical process to resort the skeleton file is as follows:

Use the short-form “idx” column from either a proposed list or the
“new_order” column from an edited list to create a new column,
“new_order”, within the long-form skeleton dataframe.

The ordering information column data from either the proposed or edited
list is joined into the skeleton with the pandas data alignment feature us-
ing the common empkey indexes. The skeleton may then be sorted by the
month (“mnum”) and the “new_order” columns.

The generic command to create an integrated dataset is as follows:

5.2. program flow 53

seniority_list Documentation, Release 0.65

%run compute_measures <proposal_name>

The compute_measures.py accepts up to three arguments specifying job assignment
conditions from the following list:

['prex', 'ratio', 'count']

The arguments correspond to the ‘prex’, ‘ratio_cond’, and ‘ratio_count_capped_cond’
job assignment conditions described within the ‘settings.xlsx’ portion of the ‘ex-
cel_input_files’ section of the documentation.

The following command would run the script for proposal “p1” with both pre-existing
and a ratio job assignment conditions as specified in the settings.xlsx input file:

%run compute_measures p1 prex ratio

Other options for integrated dataset construction are defined via the input files, such
as job change schedules and recall schedules.

Standalone datasets

Standalone datasets for each separate employee group are also created by the program
for comparative use. The creation process is very similar to the integrated process
described above, with the exception of the integrated list sorting and job assignment
by employee group. After the standalone datasets are created, they are combined into
one dataset (retaining the standalone metrics), permitting simple comparison with any
integrated dataset.

The following command would create a standalone dataset with a pre-existing job
assignment condition. The condition “prex” argument is optional, and is the only
conditional argument accepted by the standalone.py script.

%run standalone prex

dataset attributes (columns)

The program generates many attributes or measures associated with the data model(s).
These calculated attributes become the source for data model analysis. The attributes
marked with an asterisk in the list below are precalculated within the skeleton file.
The remaining attributes below are calculated and added to a sorted skeleton file as
columns when a dataset is created.

1. mnum* - data model month number

2. idx* - index number (associated with separate group lists)

3. empkey* - standardized employee number

4. mth_pcnt* - percent of month for pay purposes (always one except for pro-rated
retirement month)

54 Chapter 5. user guide

seniority_list Documentation, Release 0.65

5. date* - monthly date, end of month

6. year* - contract year for pay purposes

7. pay_raise* - additional (or reduced) modeled annual pay percentage

8. fur* - furloughed employee, indicated with one or zero

9. eg* - employee group numerical code

10. retdate* - employee retirement date

11. doh* - date of hire

12. ldate* - longevity date

13. lname* - last name

14. line* - active employee, indicated with one or zero

15. sg* - special treatment group, indicated with one or zero

16. ret_mark* - employee retirement month, indicated with one or zero

17. scale* - employee longevity year for pay purposes

18. s_lmonths* - employee longevity in months at starting date

19. age* - age for each month

20. snum - seniority number for each month

21. mlong - employee longevity in months for each month

22. ylong - employee longevity in decimal years for each month

23. new_order - order of integrated list or edited integrated list

24. orig_job - employee job held at starting date (or at implementation date for the
data model months after a delayed implementation)

25. jnum - job (level) number

26. spcnt - monthly seniority percentage of list (active only, most senior is .0, most
junior is 1.0)

27. lnum - monthly employee list number, includes furloughed employees

28. lspcnt - monthly percentage of list, includes furloughed employees

29. job_count - monthly count of jobs corresponding to job held by employee

30. rank_in_job - monthly rank within job held by employee

31. jobp - monthly percentage within job held by employee

32. cat_order - monthly employee job ranking number (rank on list organized from
best job to least job)

5.2. program flow 55

seniority_list Documentation, Release 0.65

33. mpay - monthly employee compensation

34. cpay - career pay (cumulative monthly pay)

These attribute names and their definitions are stored within the dict_attr.py file, gen-
erated with the build_program_files.py script.

5.2.5 filtering and slicing datasets

Datasets are large pandas dataframes and may be sliced and filtered in many ways. The
user may be interested in reviewing the pandas documentation43 concerning indexing
and selecting data from dataframes (and series) for more detailed information. One
of the more common methods particularly helpful with the seniority_list datasets is
boolean indexing. Boolean (True/False) vectors may be created by specifying attribute
column value parameters within the bracket symbols. Only rows matching a True
condition will be returned as part of the new, filtered dataset.

For example, to retrieve all of the data from a dataset named “ds” where employee age
was greater than or equal to 45 years:

ds[ds.age >= 45]

If an additional filter is desired, it can be added by enclosing both filters with paren-
theses, joined with the “&” symbol. This filter slices for employees greater than or
equal to 45 years of age and who belong to employee group (“eg”) 1:

ds[(ds.age >= 45) & (ds.eg == 1)]

Filtered datasets may be assigned to a variable and then further ananlysis conducted on
that particular subset of the original dataset. One common usage for this new filtered
dataset variable would be as the dataframe input for a plotting function.

5.2.6 visualization

The seniority_list data models are full of calculated metrics ready to be analyzed.
The pandas dataframe format was specifically designed for data analysis, and the
user is encouraged to explore the datasets with the many methods available with
the python scientific stack. In addition to these user-defined analysis techniques, se-
niority_list offers over 25 built-in visualization functions which may be used to pro-
duce highly customizable charts. One of the notebooks included with the program,
STATIC_PLOTTING.ipynb, demonstrates some of the capability of these functions
in an editable format. The INTERACTIVE_PLOTTING.ipynb notebook contains

43 https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html

56 Chapter 5. user guide

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html

seniority_list Documentation, Release 0.65

interactive charts. Please explore the docstrings for specific descriptions of the capa-
bilities, inputs, and options available.

The built-in plotting fuctions follow a default layout convention when applicable, as
indicated below:

Fig. 18: default layout for built-in plotting functions

In the case where a chart x-axis represents list percentage or job ranking, ordering is
presented worst to best, left to right.

As mentioned previously, the plotting functions may receive pre-filtered datasets if
the user desires to study a specific subset. Additionaly, many of the functions contain
built-in filtering arguments to make this option more convenient.

Example plotting function definition with attribute filtering arguments:

def stripplot_eg_density(df,
mnum,
eg_colors,
ds_dict=None,
attr1=None,
oper1='>=',
val1=0,
attr2=None,
oper2='>=',
val2=0,
attr3=None,
oper3='>=',
val3=0,
bg_color='white',
title_fontsize=12,

(continues on next page)

5.2. program flow 57

seniority_list Documentation, Release 0.65

(continued from previous page)

suptitle_fontsize=14,
xsize=5,
ysize=10):

The “attrx”, “operx”, and “valx” (substitute x for a common number: 1, 2, or 3) in-
puts allow the user to specify a dataset filtering operation by specifying the attribute,
operator, and value respectively.

For example, in the function argument excerpt below, the visualization would only
include employees with a longevity date less than or equal to December 31, 1986.

attr1='ldate', oper1='<=', val1='1986-12-31',

The following code example demonstrates how the function above could be used
within a Jupyter notebook cell to filter the input “p1” dataset to include only employees
who are at least 62 years old:

import matplotlib_charting as mp

mp.stripplot_eg_density('p1',
40,
eg_colors,
attr1='age',
oper1='>=',
val1='62',
ds_dict=ds_dict,
xsize=4)

The slice_ds_by_index_array function permits another type of specific filtering relat-
ing to a certain condition existing within a particular month. The function will find
the employee data which meets the selected criteria within the selected month, and
then use the index of those results to load data from the entire dataset for the matching
employees. For example, a study of the global metrics for only employees who were
older than 55 years of age during month 24 could be easily performed. The output of
this function is a new dataframe which becomes input for other analysis functions.

seniority_list offers a wide range of chart plotting color schemes. A color dictionary is
created as part of the build_program_files.py script with matplotlib colormap names
as keys and lists of colors as values. All matplotlib colormaps (87 as of September
2017) are now available for plotting. Each color list is automatically generated with a
length equal to the number of job levels in the data model + 1. This supplies a color for
each job level plus an additional color for a furlough level. Additional customization
of the colormaps is available - please see the matplotlib_charting.py module plotting
function make_color_list docstring44 for full information. To use one of the generated

44 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.make_color_list

58 Chapter 5. user guide

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.make_color_list

seniority_list Documentation, Release 0.65

colormaps, call cdict[“<colormap name>”] where “cdict” is a variable pointing to the
color dictionary.

The “example gallery45” section of the documentation showcases more of the visual-
ization capabilities of seniority_list.

The visualization functions are located within the matplotlib_charting.py module.

5.3 editor tool

seniority_list excels at outcome analysis of integrated list proposals. A powerful addi-
tional feature of seniority_list is the ability to easily modify list ordering and condi-
tional inputs in order to achieve equitable outcome results. This task is accomplished
through the use of the editor tool. The editor tool allows the user to make precise
adjustments to integrated list order segments through an intuitive, interactive, and iter-
ative visual process. The integrated outcome result for each modification is presented
to the user in near real time, for further analysis and editing.

After a change or edit has been made to an integrated list proposal, the editor tool
creates a completely new outcome dataset based on that modification. The user then
selects attributes from the new dataset to be viewed and measured and/or compared to
another dataset. The tool will display the results for each employee group indepen-
dently within the main chart area.

For example, the need for an adjustment to a proposed integrated list may be indicated
when its differential outcome result reveals significant loss for one work group in terms
of job opportunities, career compensation, or another job quality metric while showing
significant gains in the same areas for another group. Outcome inequities will certainly
exist when a strict formula(s) is applied when combining lists, unless each employee
group list contains a relatively equivalent distribution of age, hiring patterns, and jobs.
Inequities may also exist due to one or more of the parties attempting to gain advantage
for members of their own group at the expense of the other group(s). Whatever the
cause, it is relatively easy to alleviate or eliminate outcome equity distortions with the
editor tool.

By utilizing the recursive editing feature of the editor tool, the user may create entirely
new integrated list proposals with objective, quantifiable, and balanced outcomes.
Outcome results are observable directly within the tool interface and may be easily
validated with the other analysis capabilities of seniority_list.

The editor tool is used within the Jupyter notebook and is run as a bokeh server ap-
plication usinge the editor function from the editor_function module. Optional styling
arguments may be passed to the function but are not required for it to run.

45 http://rubydatasystems.com/gallery.html

5.3. editor tool 59

http://rubydatasystems.com/gallery.html

seniority_list Documentation, Release 0.65

The bokeh FunctionHandler and Application class objects are used to run the editor
within the notebook, along with the functools “partial” method which permits optional
editor function arguments to be used.

import editor_function as ef
from functools import partial

from bokeh.application import Application
from bokeh.application.handlers import FunctionHandler

from bokeh.io import show, output_notebook

output_notebook()

handler = FunctionHandler(partial(ef.editor,
#insert editor function arguments

→˓here as desired...
))

app = Application(handler)
show(app)

There is no limit to the number of “edits” which may be accomplished - the user may
recursively apply as many large or small adjustments as are needed to achieve the
desired results. Additionally, the tool may be reset to an original unedited list proposal
at any time, so that the user may freely explore the tool confidently.

The editor tool is able to incorporate job assignment conditions (conditions and restic-
tions) within modified list outcomes. (See the “applying conditions” section below).

Outcome values may be displayed within the main chart area using either an absolute
(actual) attribute outcome of a list proposal, or a comparative differential attribute
result between two proposals. The user may quickly switch between the two views
using a dropdown selection and button click.

The tool offers a filtering feature so that attribute cohorts from each employee group
may be isolated and measured. For example, this capability permits comparison of
employees from each group hired before a selected year, holding a specific job, or
display of selected data relating to a particular data model month.

Animation of monthly data model results, hovering over data points for tooltip infor-
mation, real-time adjustment of chart colors and element sizing, and other interactive
exploration features are included with the tool.

Note: There is a notebook included with seniority_list, EDITOR_TOOL.ipynb,
which makes it easy to open the tool.

60 Chapter 5. user guide

seniority_list Documentation, Release 0.65

The editor tool interface consists of input controls, the main chart, and a distribution
density chart.

Fig. 19: the editor tool interface

The following flowchart presents the overall list editing process. The sections below
will describe the process in detail.

5.3. editor tool 61

seniority_list Documentation, Release 0.65

Fig. 20: list editing process

Files created/updated by the editor tool:

With “CALC” button:

• p_edit.pkl

• editor_dict.pkl

With “SAVE EDITED DATASET” button:

• p_edit.pkl

• editor_dict.pkl

• ds_edit.pkl

With “SAVE EDITED ORDER to proposals.xlsx” button:

• proposals.xlsx (add or replace an “edit” worksheet)

Note: Edited datasets are not automatically saved. The user must click
on the “SAVED EDITED DATASET” button (located on the proposal/save

62 Chapter 5. user guide

seniority_list Documentation, Release 0.65

tab) to preserve an edited dataset. Previously saved edited datasets will
be overwritten unless the ds_edit.pkl file is first moved outside of the dill
folder.

5.3.1 the editor tool controls

The editor function itself accepts some arguments, but most of the interaction with
the editor tool will be through the editor tool controls, consisting of various sliders,
dropdowns, checkboxes, and buttons.

The editor controls are grouped into several sections consisting of the upper left panels,
the center section, the upper right panels, and the edit zone slider along the spanning
the bottom of the control area.

Fig. 21: editor control grouping with the edit zone slider at the bottom (unmarked)

Many editor tool controls are contained within subpanels, selectable by tabs at the top
of the tool.

The controls will be introduced below, proceding left to right as they appear within the
editor tool. Details on how to use the controls will be covered in the next section.

5.3. editor tool 63

seniority_list Documentation, Release 0.65

squeeze panel

This panel is used extensively during the editing process.

Fig. 22: squeeze panel (upper left panels)

• sq type dropdown

– log

* select a log or incremental packing squeeze operation

– slide

* select a defined positional movement squeeze operation

• emp grp dropdown

– select the employee group (integer code) to move within the selected
section of the integrated list

• sqz dir dropdown

– select the direction of movement for the squeeze operation

• squeeze slider

– adjust the single slider control to control:

* squeeze force if the “sq type” dropdown is set to “log”

* list position movement if the “sq type” dropdown is set to “slide”

• edit range toggle buttons

– precisely adjust the edit zone cursor lines on the main chart

• “SQUEEZE” button

– command the program to execute a squeeze (list order modification)

64 Chapter 5. user guide

seniority_list Documentation, Release 0.65

extra filters panel

The main chart display output may be further filtered by the inputs on this panel.

Fig. 23: extra filters panel (upper left panels)

• attribute dropdowns

– select the dataset attribute to filter

• operator dropdowns

– select the mathematical operator to use for the filter

• value input boxes

– type in the value limit for the filter

The additional filters will not work unless the “use extra filters” checkbox is checked
on the “display” panel.

animate panel

The editor tool is able to display results for any data model month. The animate feature
brings this information to life. Monthly results may be quickly displayed sucessively
by user controlled forward and backward buttons, automatically with a “PLAY” but-
ton, or through the use of a slider control. Outcome results over time may be quickly
understood, providing rapid insight into equity distortions or validation of equitable
solutions, and everything in between.

5.3. editor tool 65

seniority_list Documentation, Release 0.65

Fig. 24: animate panel (upper left panels)

• Play button

– advance through the data model one month at a time

– button text will display “Pause” while the animation is running

• Reset button

– reset the data model month to the starting month, month zero.

• animation slider

– use the slider to move forward and backward in time

• BACK and FWD buttons

– move one month in time either direction

• refresh size_alpha button

– if the size or transparency of the scatter markers has been changed using
the sliders on the size_alpha tab, use this to apply the changes to the
animation output for all months of the data model. Otherwise, only
the current month displayed will use the size and alpha selected by the
size_alpha sliders.

proposal_save panel

The proposal_save tab contains controls providing inputs related to list orderings and
datasets as follows:

• selecting and creating the datasets used by the editor tool

• preserving the results of the editing process

66 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 25: proposal_save panel (upper left panels)

• baseline dropdown

– select the dataset to use

• conditions dropdown

– select conditions to apply to proposal dataset

* ‘none’: no conditions

* ‘prex’: prex

* ‘count’: count

* ‘ratio’: ratio

* ‘pc’: prex, count

* ‘pr’: prex, ratio

* ‘cr’: count, ratio

* ‘pcr’: prex, count, ratio

• proposal dropdown

– edit

* use the most recent edited dataset as the starting point for each suc-
cessive list modification

* the program automatically selects “edit” when a squeeze operation is
performed

– <other dataset names>

* display comparative or absolute results for other precalculated
datasets

• SAVE EDITED DATASET button Saves the following files to the dill folder:

5.3. editor tool 67

seniority_list Documentation, Release 0.65

– p_edit.pkl

– editor_dict.pkl

– ds_edit.pkl

• SAVE EDITED ORDER to proposals.xlsx button Adds/updates an “edit”
worksheet to:

– proposals.xlsx

center section

Fig. 26: center section dropdown and buttons

• display attr dropdown

– select the dataset attribute for display within the main chart

• PLOT button

– show analysis results as determined by other control inputs

• CALC button

– calculate a dataset after a change of list order, conditional job assign-
ment, or proposal inputs

68 Chapter 5. user guide

seniority_list Documentation, Release 0.65

display panel

Fig. 27: display_panel (upper right panels)

The display panel contains checkboxes on the left and dropdowns on the right, further
divided into upper and lower sections.

upper left

filter checkboxes

• use extra filters if checked, use additional filtering as selected on
the “extra filters” panel

• at_retire_only if checked, only show results for employees in last
month of employment before retirement

lower left

display type checkboxes

• scatter show results with scatter markers, one marker per em-
ployee, color coded by employee group

• poly_fit show a polynomial fit line for each group

• mean show an exponential moving average line for each group

• savgol show a smoothed Savitzky-Golay filter line for each group

upper right

month filter dropdowns

• month oper filter data model month using selected mathmatical
operator

• month num select data model month for filtering

5.3. editor tool 69

seniority_list Documentation, Release 0.65

lower right

axis display type dropdowns

• ytype

– diff select a differential or comparative result display relative
to baseline dataset

– abs select a view of results from proposal or edited dataset
only (no comparison)

• xtype

– prop_s (proposed order, “static” or “starting”) x axis
shows original (data model starting month) positioning for
results

– prop_r (proposed order, “running”) x axis shows updated
position for selected data model month

– pcnt_s (proposed order, “percentage”) same as “prop_s”,
but showing list percentage vs list position

– pcnt_r (proposed order, “running percentage”) same as
“prop_r”, but showing list percentage vs list position

size_alpha panel

The controls on this tab control the size and alpha (transparency) of the scatter markers
within the main chart.

Fig. 28: size_alpha panel (upper right panels), number of sliders will vary with number of em-
ployee groups merging

• sliders

70 Chapter 5. user guide

seniority_list Documentation, Release 0.65

– the vertical sliders are color-matched to each employee group color

– each employee group within the data model will have a pair of sliders:

* “S” will adjust the size of the scatter markers on the main plot

* “A” will adjust transparency (alpha) of the scatter markers

– the program will automatically create the proper number of sliders for
each case study

• Reset button

– set size and alpha sliders to default values

• <S and S> buttons

– decrease or increase the size of all markers

• <A and A> buttons

– decrease or increase the alpha value of all markers

Size/alpha adjustment occurs immediately on the main chart (no need to use plot but-
ton).

grid_bg panel

Fig. 29: grid_bg panel (upper right panels)

• chart bg/grid and edit zone checkboxes

– apply the “chart / edit_fill” or “grid / edit_line” color and alpha value to
the checked areas.

– the updates only occur when a color value or alpha value changes

5.3. editor tool 71

seniority_list Documentation, Release 0.65

– if “chart bg/grid” is checked, the top color dropdown controls the chart
background color and the bottom color dropdown controls the chart grid
color

– if “edit zone” is checked, the top color dropdown controls the color of
the fill between the edit zone cursors and the bottom color dropdown
controls the color of the cursor lines

• chart / edit_fill dropdown

– select the color of the corresponding areas

• grid / edit_line dropdown

– select the color of the corresponding areas

• alpha dropdowns

– select the alpha (transparency) of the corresponding areas

• Reset button

– reset the colors, alphas, and edit_line_width to default values

• minor grid lines checkbox

– show minor grid lines when checked

– color and alpha is locked to main grid line color and alpha as they exist
when checkbox is checked

• edit_line_width dropdown

– select the width of the edit zone cursor lines

Grid/bg adjustment occurs immediately on the main chart (no need to use plot button).

hover panel

The hover feature will provide selected data as tooltips when the mouse cursor is
positioned over a scatter marker.

Use the “PLOT” button to refresh/include selected hover attributes within calculated
chart data. Ensure that the chart hover tool is active to display tooltips (click on hover
tool icon to display vertical blue line next to the icon).

72 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 30: hover panel (upper right panels)

• hover ON checkbox

– turn the hover feature on and off

– unchecking this feature when it is not needed will slightly improve the
performance of the editor tool

• hover attributes checkboxes

– select the attributes to display as tooltips

– if the chart display attribute is the same as a selected hover attribute, the
hover attribute will not display as a tooltip

density panel

Fig. 31: density panel (upper right panels)

• “S” slider

– controls the stripplot (density) chart marker size

5.3. editor tool 73

seniority_list Documentation, Release 0.65

• “A” slider

– controls the stripplot chart marker alpha (transparency)

Density adjustment occurs immediately on the density chart (no need to use plot but-
ton).

edit zone slider

Fig. 32: edit zone slider and chart cursor lines delineating the edit zone

The edit zone slider is used to select a section of an integrated list proposal. The
selected section is used by the “squeeze” routine when editing list order.

Each end of the slider range may be adjusted independently with a mouse click and
drag of an end handle or the entire range may be moved with a click and drag of the
slider section between the end handles.

The slider movement is used to position vertical cursor lines within the main and
density charts in real time. If data for a future month is displayed within the main

74 Chapter 5. user guide

seniority_list Documentation, Release 0.65

chart, future list positioning data is converted for correct display within the density
chart which always displays data for the complete integrated list proposal. Therefore,
the main chart cursor lines and the density chart cursor lines will often be misaligned
vertically. This is normal due to different x axis scaling between the charts.

Precise adjustment of the cursor lines is available with the toggle buttons found on the
“squeeze” panel.

5.3.2 using the editor tool

The editor tool is really an analysis tool and a corrective/creative tool in one. Datasets
which have already been generated can be analyzed in many ways, both by themselves
and compared to each other without any editing taking place. When equity outcome
distortions are apparent, the tool may be used to adjust input list order to reduce the
distortions. A new outcome dataset is created based on the modified input, which is in
turn available for analysis and further modification. The end result may be an entirely
new list proposal which has been created by the editor tool based upon outcome equity
measurements.

Common actions when using the editor tool include:

• apply various filters to datasets and then click the “PLOT” button to see the re-
sults

• set tooltips to “hover to discover” further information associated with each em-
ployee scatter marker - use the “PLOT” button to load

• select an “edit zone” using the edit zone slider and modify list order input by us-
ing the “SQUEEZE” button, then calculate the outcome with the “CALC” button

• animate outcome datasets over time

• adjust colors and sizes of many of the chart elements in real time

• compare datasets or simply see the results for one dataset using the “ytype” se-
lection

• control the x axis display to show original list position or an updated future list
position

The normal workflow centers on editing the integrated list order using the controls on
the “squeeze” panel and checking the results using the “display attr” dropdown with
the “PLOT” button. With practice, the user will find that using the tool is relatively
easy and visually intuitive.

Datasets (models) for use within the editor tool are specified with the “baseline” and
“proposal” dropdown selections on the “proposal_save” panel.

If “edit” is selected from the “proposal” dropdown, and an edited dataset is not found
by the program, the program will default to the first of the integrated datasets listed

5.3. editor tool 75

seniority_list Documentation, Release 0.65

within the proposal_names.pkl file as a starting point. After the first “calculate” button
execution, the program will automatically use the newly created “ds_edit” dataset for
each subsequent operation.

attribute selection

Fig. 33: the editor display attribute dropdown control

display attribute selector

• display attr dropdown -select the dataset attribute to display within the main
chart

This selection controls the metric (attribute) values which will be displayed within the
main chart. To display a different attribute, use the dropdown to pick another mea-
surement and then click the “PLOT” button. Possible attribute selections include list
percentage, career compensation, job levels, and others. Further filtering (see below)
is available to limit displayed results to a particular month, group, or other targeted at-
tribute(s). In the image below, note that to the right of the dropdown, a filter has been
set to show only employees in their retirement month (“ret_only” checkbox). The dif-
ferential chart is presenting information associated with the final month seniority list
percentage (“spcnt”) for all employees.

76 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 34: attribute selection dropdown

basic filters

Fig. 35: retirement only and month filter controls (display tab)

values at retirement checkbox

• ret only checkbox

– display only results for employees as measured in their final month of
working just prior to retirement

5.3. editor tool 77

seniority_list Documentation, Release 0.65

month filter

• month operator dropdown

– select operator (such as ‘>=’ or ‘==’) to be used with month
number dropdown for display month filtering

• month number dropdown

– select month number to be used for display filtering

The month filter is always active, except when the animation feature is in
use. Results for all months are displayed by selecting month ‘0’ combined
with the ‘>=’ operator.

Month ‘0’ represents the start month for the data model.

A single month of data may be displayed by using the ‘==’ operator com-
bined with a selected month number.

The user may remove the display of pre-implementation information by
setting the operator to ‘>=’ combined with the implementation month value.

extra filters

The main chart display output may be further filtered if the user wishes to measure spe-
cific segments of the employee group(s). This filtering does not affect overall dataset
calculations - only the chart display output is filtered. Up to three display filters may
be used simultaneously. This extra filtering is in addition to any month or retirement
filtering from the display panel.

Fig. 36: the editor display filter controls

78 Chapter 5. user guide

seniority_list Documentation, Release 0.65

The additional filters will not work if the “filter” checkbox is not checked. Example
filters are “ldate <= 1999-12-31”, “jnum == 6”, or “ylong > 30”

Fig. 37: example filtering: seniority list percentage for employees retiring with 35 or more years
of longevity, absolute values

5.3. editor tool 79

seniority_list Documentation, Release 0.65

marker style and axis mode selection

Fig. 38: marker style and axis type selection (display tab)

marker style selection

These checkboxes control the aggregate display type for the information
presented within the main chart display. All styles differentiate between
employee groups by color.

• scatter checkbox

– show results as a scatter chart, one dot for each employee result

• poly_fit checkbox

– show the results as a smooth polynomial fit line, one line per
employee group

• mean checkbox

– show the results as an average line, one line per employee group

• savgol checkbox

– show the results as a smoothed line, calculated using a Savitzky-
Golay filter, one line per employee group

80 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Changes to marker style are reflected immediately on the main chart (no
need to use plot button). More than one style may be selected at the same
time.

axis mode section

• ytype dropdown Note: See further description and discussion in the “differen-
tial display mode” and “absolute display mode” sections below.

abs (absolute values)

– display the actual results for the input (proposal) dataset (non-
comparative).

diff (differential values)

– display the difference between the same selected dataset attribute be-
tween two specified datasets, normally standalone data and another cal-
culated dataset, which could be the results of a proposed integrated list
model or an edited model produced from the editor tool itself. Displayed
differences may be between any datasets - there is no requirement to
compare only with standalone data.

• xtype dropdown prop_s

– an abbreviation for “proposal order, static (or starting)” and is likely to
be the most used setting for the display. The main chart displays results
with the employee group(s) ordered along the x axis according to the full
initial underlying integrated list, which may be a proposal submitted by
one of the parties or an edited list. All squeeze operations are performed
according to proposal order.

prop_r

– an abbreviation for “proposal order, running”. The main chart displays
results with the employee group(s) ordered along the x axis according to
the underlying integrated list as it would exist at a particular designated
month within the data model. With this display, employees advance
position ranking as retirements or other factors allow, and those new list
positions are used for the x axis positioning.

pcnt_s

– “percentage, static”. Same as the “prop_s” display type, with list per-
centage displayed instead of static list order (seniority) number.

pcnt_r

– “percentage, running”. Same as the “prop_r” display type, with list per-
centage displayed instead of running list order (seniority) number.

5.3. editor tool 81

seniority_list Documentation, Release 0.65

Fig. 39: editor chart ordered by static integrated list order for a future month

execution buttons

Fig. 40: the editor execution buttons (the “SQUEEZE” button is located on the squeeze panel)

execution buttons

• SQUEEZE button

– executes a squeeze operation, using the input values from the squeeze
slider, the edit zone range slider, and the squeeze selection dropdown
boxes

• PLOT button

82 Chapter 5. user guide

seniority_list Documentation, Release 0.65

– uses the attribute selection, ytype and xtype selections, month and other
applicable filters to display data on the main chart. Plot inputs may be
changed between plot displays.

– all results correspond to the last calculated dataset, based on all non-
squeeze editor tool inputs.

– refreshes or creates the data source for hover tooltips

– resets the main chart edit zone cursor lines and slider position (Note: use
the bokeh “reset” tool button to reset chart scaling, further explained in
the “using the bokeh chart tools” section below)

• CALC button

– calculates a new dataset based on the most recent squeeze operation and
displays the results on the main chart display.

It is not necessary to recalculate the dataset to view various attribute results associated
with a resultant dataset. Simply select the desired attribute and filter(s) and click the
“PLOT” button. Calculation using the “CALC” button is only required when actually
modifiying integrated list order after a squeeze operation.

Fig. 41: items highlighted may be changed without recalculating - use the “PLOT” button

differential display mode

Fig. 42: differential ytype dropdown selection (display panel)

5.3. editor tool 83

seniority_list Documentation, Release 0.65

When a “diff” ytype (y axis) is selected, the difference between attribute calculations
from the proposal and baseline datasets will be displayed within the main chart area.
Distortions are generally identified by inequitable positive or negative deviation from
the norm, as represented by the zero line on the differential chart. By default, the norm
(baseline) is defined as the standalone outcome results, but any calculated dataset may
be set as the baseline for comparison.

Fig. 43: cat_order (job value) differential, proposal p1 vs. standalone

The chart below displays the seniority percentage difference at retirement between
sample proposal “p1” and standalone outcomes. In this case, only the average differ-
ential is displayed. This type of output is selected with the “mean” checkbox control.
The results reveal group 1 employees retiring at a better (more senior) combined se-
niority list percentage than under projected standalone conditions, and group 2 expe-
riencing a large negative result under the “p1” proposal, as compared to standalone
projections.

84 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 44: average differential values proposal “p1” vs. standalone seniority percentage at retirement

absolute display mode

Fig. 45: absolute mode dropdown selection (display panel)

When an “abs” ytype (y axis) is selected, the actual attribute calculation values from
the dataset defined by the “proposal” dropdown (“proposal_save” panel) will be dis-
played within the main chart area. Subsequent displayed values will be from the last
calculated edited dataset.

The chart below displays the actual seniority list percentage for all 3 groups within the
sample dataset at the time of retirement for each employee, smoothed with a Savitzky-
Golay filter (“savgol” checkbox on the “display” panel). These results are derived
from the same input as the average differential chart above. The results indicate group
2 employees on average will not advance up through the integrated seniority list as far
as employees from the other groups prior to reaching retirement under proposal “p1”.

5.3. editor tool 85

seniority_list Documentation, Release 0.65

Fig. 46: smoothed absolute (actual) values proposal “p1” seniority percentage at retirement

applying conditions

Job assignment conditions may be applied to datasets created with the editor tool
function by selecting a condition from the “conditions” dropdown selection on the
“proposal_save” panel. Conditions associated with baseline datasets are incorporated
and applied when the datasets are constructed with the compute_measures.py script.
Conditions applied with the editor tool only apply to datasets created by the editor tool
(designated with the “proposal” dropdown selection).

The editor tool will apply job assignment conditions during the construction of the
proposed integrated dataset according to the cond_dict dictionary key, value pairs be-
low, with the “condition” dropdown selection as the key and the corresponding value
as the condition list to apply.

cond_dict = {'none': [],
'prex': ['prex'],
'count': ['count'],
'ratio': ['ratio'],
'pc': ['prex', 'count'],
'pr': ['prex', 'ratio'],
'cr': ['count', 'ratio'],
'pcr': ['prex', 'count', 'ratio']}

The conditional job assignment parameters are set within the settings.xlsx spreadsheet
input file, and are converted to a python dictionary file for use within the program
during the execution of the build_program_files.py script. See the “excel input files”
section for the definitions of the various job assignment conditions. Advanced users
may wish to directly access and modify dictionaries associated with conditional job

86 Chapter 5. user guide

seniority_list Documentation, Release 0.65

assignments located within the dict_settings.pkl file when experimenting with “what
if” scenarios.

Results for a precalculated dataset may be viewed by using the “proposal” dropdown
selection and then clicking the “CALC” button.

Note: Job assignment conditions (as defined by the “conditions” dropdown selection)
will be included within calculated datasets produced and viewed with the editor tool.
When analyzing a previously calculated dataset, be sure that the selected conditions
match the conditions applied to the original dataset if results containing equivalent
conditions are desired. Conversely, the effect of particular job assignment conditions
may be analyzed by comparing a dataset without conditions to a baseline dataset which
included conditions.

squeezing

If one group is enjoying a windfall in all or only a section of the proposed list while
another group(s) is suffering a loss, the corrective action is to reduce the list position
of the windfall group relative to the other group(s), and then recalculate for further
analysis and adjustment.

Fig. 47: controls used when editing an integrated list

A slice of the differential display may be selected by using an interactive slider control
(labeled “edit zone” above) which positions two vertical lines on the chart. The area
of the chart between the lines represents a section of the integrated seniority list (the
“edit zone”).

If a future month(s) filter has been applied to the data displayed, the selected section
will be internally converted to include all employees who have already retired prior to
the future month. This is done because all editing occurs to the initial integrated list
ordering and so that section selections and calculated results sync with the cursor lines
display. The lower density chart cursor lines are automatically corrected to show the
equivalent beginning month section.

5.3. editor tool 87

seniority_list Documentation, Release 0.65

Once the section of the list has been selected, an algorithm within the editor tool is
then utilized to “slide” or “squeeze” the members from one of the original employee
groups up or down the list. This action creates a new modified order, while maintaining
proper relative ordering within each employee group.

Fig. 48: squeeze selectors (squeeze tab)

The squeeze algorithm works by one of two basic ways. The first method is a loga-
rithmic move, the second is a position slide move.

The logarithmic method first selects all of the employees from the defined list section,
and sets aside the employees who are not part of the employee group to be moved. The
“emp grp” dropdown box selection sets the group to be moved. The employees from
the target group are then spread throughout the list section in a pattern determined by
the “sqz dir” (squeeze direction) and the value set with the “squeeze” slider control.
The logarithmic squeeze “packs” employees in one direction or the other so that there
is an ever-increasing density of employees filling list slots. The severity of the density
differential is set with the “squeeze” slider. If the squeeze is set to the lowest possible
value of 1, all employees from the target group are spread evenly within the selected
section.

The position slide method simply moves all employees from the selected employee
group a certain number of positions one way or the other. The number of positions to
move is set with the “squeeze” slider setting. If the requested move would cause target
employees to be moved outside of the selected list section, the employees will “pile

88 Chapter 5. user guide

seniority_list Documentation, Release 0.65

up” or be compressed at the edge of the section as necessary to stay within the section
boundary.

Fig. 49: the editor slider controls and value readouts (squeeze tab)

With either squeeze method, employees from the other groups are reinserted into the
remaining slots within the selected integreated list section, in pre-squeeze order. The
net effect is that the groups trade positions while maintaining order within each group.

Following the squeeze operation, the horizontal list density chart is updated. This
represents the new population density within the edit zone as a result of the squeeze.
The squeeze may be repeated differently if the density chart indicates an undesired
population shift. The list density chart will be updated each time a squeeze operation
is performed. The resultant squeeze chart is always presented in integrated list order
perspective.

When satisfied with the squeeze, the squeeze-modified integrated list order is then
sent back to the dataset creation routine by clicking the “calculate” button. A new
dataset is generated using the modified list order (and any selected conditions from the
“proposal_save” panel) and the results appear within the main chart display.

The edit process may be repeated many times, each time using the results of the pre-
vious operation. The interactive and iterative nature of the editor tool provides the
user with a method to rapidly reduce or eliminate observed equity distortions while
“drilling down” to possible list solutions.

5.3. editor tool 89

seniority_list Documentation, Release 0.65

using the bokeh chart tools

The editor tool was developed using the bokeh46 plotting library. Many interactive
features are “built-in” with bokeh, allowing the user to explore data much more fully
than with static charts. The editor tool incorporates a number of these interactive chart
tools to allow zooming, tooltip data display, and other features.

The chart tools are located on the right side of both chart displays.

A blue vertical line to the left of a tool icon means that the tool is active. A click on a
tool icon will activate/deactivate it.

Fig. 50: chart tool icons

The tool definitions (paraphrased) below are from the bokeh user guide47 :

• The pan tool allows the user to pan the plot by left-dragging a mouse across the
plot region.

• The box zoom tool allows the user to define a rectangular region to zoom the plot
bounds to, by left-dragging the mouse across the plot region.

• The wheel zoom tool will zoom the plot in and out, centered on the current mouse
location.

• The reset tool will restore the plot ranges to their original values.

• The undo tool allows to restore previous state of the plot.

• The redo tool reverses the last action performed by undo tool.

• The save tool allows the user to save a PNG image of the plot.

• The crosshair tool draws a crosshair annotation over the plot, centered on the
current mouse position.

46 https://bokeh.pydata.org/en/latest/
47 https://bokeh.pydata.org/en/latest/docs/user_guide/tools.html

90 Chapter 5. user guide

https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/docs/user_guide/tools.html

seniority_list Documentation, Release 0.65

• The hover tool is an inspector tool.

Controlling main chart auto-scaling

• using the box zoom or wheel zoom will “lock” chart scaling

– this is helpful during animation, so that the chart is not continuously rescal-
ing to accommodate changing data values (can cause slow or jerky anima-
tion)

– hint: one small mouse wheel move forward and backward using the wheel
zoom tool will easily lock scaling

• click the reset chart tool icon to reset auto chart scaling

– a locked chart scale may mean that nothing is seen after changing a display
attribute and plotting until auto-scaling is reset

editor function inputs

The inputs described here are related to the actual editor function arguments, not the
inputs made through the various dropdown, check boxes, sliders, and buttons which
are displayed above the main chart.

The editor function inputs (arguments) are described within the function docstring,
accessed as described in the “notebook interface” section below. The inputs are related
to items concerning smoothing values for the various display options, and other sizing
and appearance options less commonly altered when running the editor tool.

To change one of the parameters, insert the key value definition within the partial
method after the editor function.

Example:

handler = FunctionHandler(partial(ef.editor,
plot_width=800, # change plot width
plot_height=450, # change main

→˓plot height
ema_len=30 # adjust exponential

→˓moving average length
))

The default settings for the optional inputs will be changed to the new values. The new
values will be used when the editor tool is created by the program.

5.3. editor tool 91

seniority_list Documentation, Release 0.65

editor output

The editor produces a dataframe containing the edited list order and a calculated
dataset based on that edited list order. A small python dictionary is also generated
to allow the tool settings to persist between iterations. All of these files are stored as
pickle files within the dill folder.

The list order dataframe is named p_edit.pkl. It is like other proposal files, contain-
ing an index consisting of employee numbers and one column representing list order
number.

The dataset produced from the editor tool is stored as ds_edit.pkl. It may be fully
examined and visualized in the same manner as other datasets. Edited datasets are not
automatically stored when the “CALC” button is clicked. To store an edited dataset,
the user must click the “SAVE EDITED DATASET” button on the “proposal_save”
panel.

The small dictionary file is named editor_dict.pkl. This file does exist with default
values prior to any editing and will be updated with actual editor tool settings as the
program is used.

The edited dataset, ds_edit.pkl, is only created/updated when the “calculate” button is
clicked. The other two files, p_edit.pkl and editor_dict.pkl, are created/updated every
time the “SQUEEZE” button or the “CALC” button is clicked.

5.3.3 summary

The editor is a fast and powerful tool, extremely useful for detecting relative gains
or losses or comparing actual outcome values for each employee group under various
proposals. It is able to dynamically adjust input list data based on calculated output
metrics. Resultant equity distortions may be identified, measured, and corrected in-
teractively. The editor tool offers tremendous flexibility to compensate as necessary
throughout the entire range of a combined employee population. This capability pro-
vides users with the opportunity to construct integrated seniority lists based on objec-
tive data while compensating for unique demographics existing within each employee
group list. Results are measurable and transparent. This is a huge distinction and pro-
found improvement from integrated list construction processes which employ uniform
list combination formulas, or other non-outcome-based techniques.

The seniority_list program provides the user with insight into the most important as-
pect of seniority integration: the way a combined list will affect workers for the re-
mainder of their careers. The editor tool feature allows the user to create a solution
foundationally focused on fair, equitable, and quantifiable outcome for all workers.

Edited lists may be analyzed, confirmed, and adjusted with reference to the other tools
available with seniority_list, so that results are further validated and cross-checked.

92 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Each case study will likely require a blending of analysis techniques to reach an equi-
table solution.

5.4 building lists

Processing scripts: list_builder.py, join_inactives.py

seniority_list was designed primarily as an instrument to discover the practical short-
and long-term results of various integrated seniority list proposals by calculating, mea-
suring, and comparing multiple attribute metrics, and to correct deficiencies by using
the editor tool feature. However, it may also be used as an initial integrated list con-
struction tool by utilizing a weighted-ratio, or “hybrid”, combination technique.

To build a hybrid list, import the list_builder module. Then run the build_list function
using the prepare_master_list function as the first argument, and lists of attributes and
corresponding weightings as the other arguments. The function produces a new list
ordering which can then be used as input for the dataset creation routine. The new
hybrid list order is stored in the dill folder as “hybrid.pkl”. The build_list function is
able to combine any number of employee groups simultaneously.

Example, with equal weighting applied to longevity and job percentage:

import list_builder as lb

lb.build_list(lb.prepare_master_list(),
['ldate', 'jobp'],
[.5, .5])

After a integrated list solution has been determined, a final list must be built which
reinserts inactive employees who were removed prior to the analysis process. This
task is accomplished with the join_inactives.py script.

The arguments required by the join_inactives.py script are:

• the name of the proposal dataframe containing the final order solution, without
“p_” prefix or file extension. The argument representing proposal dataframe
p_p3.pkl would set as “p3”.

• the “fill style” or cohort placement technique for the inactive employee insertion.

If the proposed list ordering does not contain the inactive employees, the “fill_style”
argument determines where the inactive employees will be placed within the combined
list relative to their same employee group active cohorts, just senior to the closest
junior cohort or just junior to closest senior cohort.

“ffill” - inactives attached to just senior same-group cohort

5.4. building lists 93

seniority_list Documentation, Release 0.65

“bfill” - inactives attached to just junior same-group cohort

The result list/dataframe is stored as a pickle file with the name final.pkl (within the
dill folder) and as an Excel file with the name final.xlsx (within the case-specific folder
located in the reports folder).

Example usage from within a notebook cell:

%run join_inactives p3 ffill

This integrated list result including active and inactive employees in concert with with
any associated conditions represents the ultimate end goal of the seniority_list pro-
gram.

5.5 notebook interface

This section will provide a basic primer to the Jupyter notebook, run through a short demo of
the program using the notebook, and provide guidance in the event that the program needs to be
reinstalled if it becomes inoperable for some reason.

From the Project Jupyter homepage48:

“The Jupyter Notebook is a web application that allows you to
create and share documents that contain live code, equations,
visualizations and explanatory text.”

From the predecessor IPython notebook original webpage (the Jupyter notebook was originally the
IPython notebook):

“It is an interactive computational environment,
in which you can combine code execution, rich text,
mathematics, plots and rich media.”

The name “Jupyter” is a combination of three programming language names, Julia, Python, and R.
It is actually capable of running code in over forty different languages, not just the three making
up its name.

48 http://jupyter.org//

94 Chapter 5. user guide

http://jupyter.org//

seniority_list Documentation, Release 0.65

seniority_list was designed to utilize the Jupyter notebook for running scripts, creating datasets,
and exploring and visualizing data.

The Chrome web browser is recommended for use with seniority_list for best performance.

5.5.1 notebook basics

starting the notebook

To run a notebook, open a terminal window or powershell and then type or copy and
paste:

jupyter notebook

A browser window will open containing a file listing. Navigate to one of the Jupyter
notebook files (ending with a .ipynb file extension, above) and click on the file name.
The notebook will open.

imports

Python files containing functions (modules) may be imported or loaded for use within
a notebook by using the “import” statement. Once a module has been imported, the
program “knows” about all the functions from that module. A module is imported and
assigned an alias, or shortened name as follows:

import matplotlib_charting as mp

Now, all of the plotting functions may be run from the notebook, and tab completion
is active. By typing the import name (“mp” in this case) followed by a dot, the user
may then hit the TAB key for a list of all of the functions available for use from the
imported module. The function may still be typed in manually or selected from the list
presented with the tab completion feature. Select from the list using the up and down
arrows and the ENTER key.

5.5. notebook interface 95

seniority_list Documentation, Release 0.65

Fig. 51: type mp. then TAB to reveal a list of functions available from the matplotlib_charting
module

running cells

The Jupyter notebook is a web interface which consists of a collection of ‘cells’ nor-
mally containing program code. The code may be executed with the results appearing
beneath the cell, if there is actual output from the code. To execute a cell, it must be
‘active’ (click on it). Then hit “Shift + Enter” on the keyboard to run it. There is also
a “run” button in the notebook header section that will work as well.

Sometimes the type of cell changes to something other than “code”, which will prevent
the execution of the cell. The type of cell may be changed back to “code” with a
dropdown box in the notebook header section.

There are numerous free tutorials and other educational materials on the web pertain-
ing to the use of the Jupyter notebook (formally known as the Ipython notebook).
Here49 is one video which may be of interest to new users.

running scripts within cells

Several of the program files are Python scripts used to perform major program tasks.
The work performed by the scripts is described in the “program flow” section above.
Below is a summary table containing required and optional arguments for each pro-
gram script.

49 https://youtu.be/HW29067qVWk

96 Chapter 5. user guide

https://youtu.be/HW29067qVWk

seniority_list Documentation, Release 0.65

script required arguments optional arguments
build_program_files case name none
make_skeleton none none
standalone none prex
compute_measures proposal name conditions
join_inactives order, fill none

• case name - the case study name (the name of the folder containing the input
files)

• prex - if a pre-existing job condition exists, use “prex” to direct the program to
apply a special job assignment condition as defined in the settings.xlsx input file

• proposal name - name of a proposed list ordering, such as “p3”, originally set
from worksheet names in the proposals.xlsx input file. Names of the proposals
may also be read from the proposal_names.pkl file within the dill folder.

• conditions - string name representing various conditional job assignment rou-
tines. Choices are:

['prex', 'ratio', 'count']

A “ratio” or “count” condition may be combined with the “prex” con-
dition.

The “excel input files” section of the documentation contains descriptions of
the condition options. The parameters for the conditions are set through the
settings.xlsx input file.

• order - a dataframe formatted with an index of empkeys and a single column
with an order number, named either “idx” in the case of an original proposal or
“new_order” when using the output of the editor tool.

• fill - the fill style to use which determines how the inactive employees are rein-
serted into the integrated list. See the “building lists” section above.

A script may be run from a Jupyter notebook cell by inserting the special com-
mand, “%run”, before a script name, and then hitting “Shift + Enter” on the key-
board to run the cell and execute the script. The following code will execute the
compute_measures.py script for proposal “p2” with a ratio count-capped condition
applied. The first line, “%%time”, will provide the user with a print out of the amount
of time it took to complete the script task:

%%time
%run compute_measures p2 count

5.5. notebook interface 97

seniority_list Documentation, Release 0.65

function docstrings

Click on function name within a cell, then Shift+TAB keyboard combination to reveal
the function docstring. Another way to do the same thing is to type the name of a
function followed by a question mark and then run the cell:

mp.quantile_years_in_position?

The information displayed may be expanded by clicking on the ^ or + symbols in the
upper righthand corner of the docstring window.

Fig. 52: click on function name, then Shift+TAB to reveal docstring, or type the name of the
function with a question mark, then run cell

The docstrings contain descriptions, instruction, and input definitions for the many
program functions of seniority_list. The docstring may in fact be the best source of
information concerning the usage of a function.

The “program demonstration” section below has more information about function doc-
strings.

functions and variables

The function variables visible within the notebook cells are contained within parenthe-
ses following the function name. The order of the variables is important and must be
maintained for the function to operate. Other variables may not be displayed within the
notebook code cell and are defined with default values within the function definition
itself. It is likely that they may changed to another value by the user.

98 Chapter 5. user guide

seniority_list Documentation, Release 0.65

To view the full function code, a text editor may be used to open the appropriate
module and search for the function name. Be careful not to change anything within the
module to ensure proper program function. When using the notebook, function code
may also be viewed by using two question marks after a function name, as follows:

mp.quantile_groupby??

A window containing the function code will open in the lower section of the notebook.

If a change is made to any seniority_list program code, please submit a pull request
or send an email with the change as required by the licensing terms of the program.
Please see the “contact” section for the developer email address.

exiting the notebook

To discontinue use of the notebook, save all notebooks and close the notebook browser
windows. Then use the keyboard combination CTRL+C within the terminal to shut
down the notebook server.

5.5.2 sample notebooks

Four sample Jupyter notebooks are included with seniority_list.

• RUN_SCRIPTS.ipynb

• STATIC_PLOTTING.ipynb

• INTERACTIVE_PLOTTING.ipynb

• REPORTS.ipynb

• EDITOR_TOOL.ipynb

As mentioned on the installation page, the Jupyter notebook is included and installed
with the Anaconda scientific platform.

The RUN_SCRIPTS notebook creates many files and the datasets from the sample
files included with seniority_list, and will provide a feel for the capability and speed
of the program.

The STATIC_PLOTTING notebook runs many of the built-in plotting functions using
the datasets produced from the Run_Scripts notebook. This notebook provides a plat-
form for practice exploring, plotting, and analyzing datasets. The “STATIC” part of
the notebook title simply means that the chart output is not interactive.

The INTERACTIVE_PLOTTING notebook was added to the program in January of
2018. It offers chart output which can be modified within the notebook in real time
using sliders and dropdown selections.

5.5. notebook interface 99

seniority_list Documentation, Release 0.65

The REPORTS notebook demonstrates the generation of summary statistical reports
for all program datasets, with output in spreadsheet and chart image formats. This
feature is described in the “quick report” section of the documentation.

The EDITOR_TOOL notebook will load the interactive editor tool. Please review the
“editing” section above for the powerful visualization and editing features available
with this function. This function will only run within the Jupyter notebook interface.

Note: The RUN_SCRIPTS.ipynb notebook must initially be run prior
to the other sample notebooks included with the program. The
other notebooks require the dataset files which are created by the
RUN_SCRIPTS.ipynb notebook.

100 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 53: click on a file with the .ipynb file extension

5.5. notebook interface 101

seniority_list Documentation, Release 0.65

Fig. 54: the Jupyter notebook in the browser, with code cells waiting to be run

To run the notebook, click on “Cell” and then from the dropdown menu, select “Run
All”. If all goes well, the notebook will load the required data, run each section of
code (“cells”), and display results below each cell.

102 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 55: running the sample notebooks

To view the files which were created during the Run_Scripts notebook execution, use
a file explorer to view the contents of the program dill folder.

5.5. notebook interface 103

seniority_list Documentation, Release 0.65

Fig. 56: files created by Run_Scripts.ipynb

Note that the dataset files (starting with “ds”) are large at 260mb+. and are gener-
ated from a sample list of approximately 7500 employees. The files depicted above
were generated utilizing the sample case study, “Sample3”, which includes approxi-
mately 7500 employees from 3 separate employee groups and 3 different integrated
list proposals.

There is one other file created, pay_table_data.xlsx, an Excel file stored in the reports
folder (not shown here).

The screenshot below is an example of matplotlib charts displayed within the sam-
ple STATIC_PLOTTING notebook. Notice that just above each chart area there is a
cell which contains the plotting function which created the charts. The inputs to the
functions may be modified directly within the notebook and re-executed, creating new
chart results in seconds.

104 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 57: changing function inputs produces new results in real time. . .

5.5. notebook interface 105

seniority_list Documentation, Release 0.65

5.6 program demonstration

This demo will walk through the steps involved with setting up and analyzing a new
case study. It is assumed that the program has been downloaded in accordance with
the “installation” section of this documentation.

Note: To run the demo using the included sample dataset, “Sample3”, no modifica-
tion of files is necessary - simply run the included notebooks in the order within the
description below.

The screenshots below were taken while using a linux operating system. The informa-
tion may be presented differently with other operating systems, but the actions remain
the same.

5.6.1 new case study

set up inputs

1. Navigate to the seniority_list folder within the main seniority_list folder with a file browser

106 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 58: the seniority_list folder within the main seniority_list folder. . .

2. Copy a case study folder within the excel folder (sample3 is fine)

Fig. 59: inside the excel folder, home of the case study input folders. . .

5.6. program demonstration 107

seniority_list Documentation, Release 0.65

3. Paste the folder back into the excel folder and rename it t match the desired case study name
- this example will use “acme”

Fig. 60: the copied folder. . .

Fig. 61: the copied folder renamed for the case study. . .

4. Modify the contents of the Excel workbooks within the acme folder as appropriate, using
the “excel input files” section of the documentation as a guide

108 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 62: the four .xlsx files ready for case study customization

set up jupyter notebook

5. Open a Jupyter notebook and navigate to the seniority_list folder containing the 5 sample
notebooks (.ipynb files).

5.6. program demonstration 109

seniority_list Documentation, Release 0.65

Fig. 63: the seniority_list folder in the jupyter notebook

6. Open the notebooks by clicking on the titles - a new browser tab will open for each notebook

110 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 64: a browser tab for each notebook, with the RUN_SCRIPTS notebook displayed

7. Modify the script arguments in the notebook cells to match the new arguments which pertain
to the current case study.

5.6. program demonstration 111

seniority_list Documentation, Release 0.65

Fig. 65: case study marked red, conditions marked blue, proposal names marked green

• RUN_SCRIPTS notebook

– case study name for build_program_files script

– condition argument(s) for standalone and compute_measures scripts

– proposal names for the compute_measures script cells (one for each
proposal)

112 Chapter 5. user guide

seniority_list Documentation, Release 0.65

• STATIC_PLOTTING notebook

– proposal string inputs to match proposal name(s)

Fig. 66: plotting functions inputs matching a proposal name

The functions have been coded so that they can accept the name of an integrated
list proposal as an input to represent a dataset calculated from that proposal. Con-

5.6. program demonstration 113

seniority_list Documentation, Release 0.65

sequently, the inputs must match the proposal names which are part of the current
case study. The source of these names are the worksheet names within the pro-
posals.xlsx input file.

create program files and datasets

8. Run the RUN_SCRIPTS notebook

Fig. 67: select the “Cell” button from the menu bar, then click “Run All”

• the contents of the dill folder will be cleared and the folder will then be
repopulated with program files and datasets pertaining to the “acme” case
study.

• open the dill folder in a file browser to see the files populate the folder in real
time. . .

114 Chapter 5. user guide

seniority_list Documentation, Release 0.65

analyze datasets

9. Run the REPORTS notebook

A statistical summary of proposed integrated list outcomes will be generated, in
the form of chart images and spreadsheets.

• ret_charts and annual_charts folders will be created within the reports
folder. Each of these folders will contain several other folders with many
basic chart images.

• ret_stats.xlsx and annual_stats.xlsx spreadsheet files will be created within
the reports folder.

10. Run the STATIC_PLOTTING notebook (with the correct proposal name argument(s)

• this will run the sample plotting functions with parameters set as they existed when the
program was downloaded.

11. Modify plotting function arguments as necessary for analysis (see docstrings)

• there are many options associated with most of the plotting functions

• view the docstrings as described in the section above to learn about the anal-
ysis possibilities with each function

The images below demonstrate a sample of possibilities with one plotting func-
tion, quantile_groupby.

The function groups an initial list of employees into equally sized segments and
tracks each segment over time according to a selected metric. The result for each
segment is displayed as a line on the chart. This technique provides a quick view
into how employees at various levels within a seniority list fare under standalone
and integrated scenarios.

The program generates a global job ranking metric, termed “cat_order” which
stands for category order. Standalone dataset “cat_order” results are normalized
with integrated results, allowing direct comparisons to be made between them.

The job ranking “cat_order” value is closely related to the “jobp” metric, which
reflects percentage of position within a job level, with the advantage of true scal-
ing for chart presentation. In other words, job levels with many jobs occupy a
larger part of the chart than job levels with few jobs.

The first image below is an example of the quantile_groupby function output dis-
playing the results for the “cat_order” measure for one employee group in a stan-
dalone scenario, as grouped into 40 quantiles.

5.6. program demonstration 115

seniority_list Documentation, Release 0.65

Fig. 68: standalone dataset, employee group 2, category order (job ranking), 40 quantiles

Here is the same group, with the first argument changed to an integrated proposal,
“p1”. The computed scenario included a delayed implementation date, indicated
with the dashed vertical date line and the sudden change in the progression of the
lines.

116 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 69: p1 dataset, employee group 2, category order (job ranking), 40 quantiles

The “show_job_bands” option changed to “True”. A background job level hier-
archy is now shown, and the sudden changes in the progression of the chart lines
begins to gain context.

5.6. program demonstration 117

seniority_list Documentation, Release 0.65

Fig. 70: p1 dataset, employee group 2, category order (job ranking), 40 quantiles, with job bands

Here, the number of quantiles input was changed to 250 to produce a much
denser presentation and a custom color spectrum was introduced, allowing a much
clearer visual presentation of the outcome.

118 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 71: p1 dataset, employee group 2, category order (job ranking), 250 quantiles, custom_color,
with job bands

Every function has a list of all possible inputs and a description of those inputs
contained within what is known as a docstring (documentation string (text)). The
docstring may be viewed by clicking on the function name within a jupyter note-
book cell, and then pushing the Shift + TAB keys at the same time.

The function docstrings also contain an overall description of the task performed
by the function.

Docstrings may also be viewed within this website by clicking on the home button

5.6. program demonstration 119

seniority_list Documentation, Release 0.65

and then scrolling to the bottom of the page and clicking the “Index” or “Module
Index” text. Full function code may be accessed by subsequently clicking on the
“[source]” text found after each function name. The top section of each function
code section will contain the docstring.

Below, a docstring has been accessed within the jupyter notebook. The first four
arguments in the quantile_groupby inputs correspond to the first four parameters
listed in the docstring (or more technically here, the Signature).

Fig. 72: function docstring accessed by clicking cursor on top of function name in the notebook
cell, then pushing Shift + TAB keyboard buttons

Further down within the docstring associated with this function are the input de-
scriptions. The descriptions provide information pertaining to the data type of
each input and sometimes a short explanation of the purpose or effect of the in-
put.

120 Chapter 5. user guide

seniority_list Documentation, Release 0.65

Fig. 73: beginning of input definitions for sample function

5.6. program demonstration 121

seniority_list Documentation, Release 0.65

Note that the quantile_groupby function can present information relating to other
metrics, not just the “cat_order” measure. It can also display more than one em-
ployee group at a time. These are more options which are easily selected by
changing the function argument values.

Global settings which affect the way the datasets are calculated are controlled
by values in the Excel input files. The function arguments only control how the
previously calculated dataset information is displayed.

12. Run the INTERACTIVE_PLOTTING notebook

• select attributes to compare with the dropdown selectors

• use the slider and buttons to view data model results over time

• change the “proposal” variable as needed to explore other datasets

create or edit lists

13. Run the EDITOR_TOOL notebook

• modify list order to smooth distortions (see the “editing” discussion within the “pro-
gram flow” section)

generate final list

14. Run the join_inactives script

• reinsert inactive employees into the integrated list solution (see the “building lists”
discussion within the “program flow” section)

5.6.2 changing program options or settings

Global settings include such things as basic vs. enhanced job hierarchies, delayed
implementation, and changes in job counts over time. Datasets must be recalculated
when any foundational parameter is modified.

To change a global program option, the input(s) within the Excel input file(s) must be
modified and the program rerun as follows:

Changing main program input options or other parameters:

1. Open the appropriate Excel input file.

2. Change the value

3. Save the Excel file

4. Return to the Jupyter notebook

122 Chapter 5. user guide

seniority_list Documentation, Release 0.65

5. Restart the kernel:

• click on the “Kernel” button in the menu bar and select “Restart”

• then rerun notebook cells:

– click on “Cells” button in menu bar, select appropriate item

6. Rerun program (generate program files)

• recalculate the datasets, rerun the following scripts:

– build_program_files

– make_skeleton

– standalone

– compute_measures (for each proposal)

7. Restart other notebook kernels

• rerun all analysis to reflect updated source data

Restarting the kernel flushes all previously loaded variable values. When notebook
cells are rerun, the program will use any updated values derived from modified input
files. If the notebook is not restarted after changing input file values or recalculating
a dataset, it will not capture the updated values. The kernel must be restarted individ-
ually for all open notebooks - restarting the kernel for the RUN_SCRIPTS notebook
will not restart the kernel for the STATIC_PLOTTING notebook, for example.

Plotting function arguments may be changed within a notebook cell and the cell rerun
without any other action (a kernel restart or file saving beforehand is not required or
desired).

5.6.3 saving/loading calculated case study data

The save_and_load_dill_folder function may be used to quickly switch between case
studies by loading previously calculated and saved program-generated files (including
calculated datasets).

saving

The “save” functionality will copy the current dill folder and save it in the
saved_dill_folders folder, named as <case study name>_dill_folder. The
saved_dill_folders folder will be created if it does not already exist. The function
will perform the save action when it is executed without any arguments:

import functions as f

f.save_and_load_dill_folder()

5.6. program demonstration 123

seniority_list Documentation, Release 0.65

The case study name will be automatically determined by reading the dill/case_dill.pkl
file.

saving and loading

The “load” functionality will save the current dill folder, look for a saved dill folder
corresponding to the string parameter provided to the “load_case” argument, and re-
place the current dill folder with the dill folder to load.

f.save_and_load_dill_folder(load_case='sample3')

If the specified load folder does not exist, the only action to occur will be saving the
current dill folder. The function will alert the user that the load operation failed.

Here is an example of attempting to load a folder which does not exist:

f.save_and_load_dill_folder(load_case='bad_case_name')

. . . will give:

'"sample3" dill folder copied to:'

'saved_dill_folders/sample3_dill_folder'

'''Error >>> problem finding a saved dill folder with a
→˓"bad_case_name" prefix in the "saved_dill_folders" folder.''
→˓'

The dill folder contents remain unchanged.

query for saved folders

The user may determine which case study dill folders are available to load by running
the function with the “print_saved” argument set to True. All saved case study names
will be printed and no other action will take place:

f.save_and_load_dill_folder(print_saved=True)

The print output will be in this format (the names of the case studies are examples
only):

'The saved dill folders available to load are:'

['sample3', 'acme_southern']

'Nothing changed, set print_saved input to "False" if
→˓you wish to save and/or load a folder'

124 Chapter 5. user guide

seniority_list Documentation, Release 0.65

5.6.4 anonymizing input data

The parties involved with an integration may consider certain input data attributes to be
private and confidential, making it difficult or impossible to share the analysis results
with others. seniority_list includes a set of specialized functions designed to address
this issue.

Employee information - name, employee number, date of birth, date of hire, and
longevity date - may be replaced with substitute values to de-identify personal in-
formation. Compensation tables may also be proportionally adjusted. This shielding
of personal information offers a potential solution to privacy or proprietary concerns.

Anonymizing dates should be avoided if possible to avoid deviations from the original
data model, due to the effect on retirements and other date-related measurements. The
random date adjustments are small, but will invariably affect the results, even if slight.

The anonymizing functions are located within the functions module.

• anon_master

• anon_pay_table

Warning: Even though the anonymizing functions are coded to create a copy of
original data, it is recommended to copy and save the entire excel folder outside of
the seniority_list file structure before applying any of the anonymizing methods.

Internally, the anon_master and anon_pay_table functions use the
“sheet_name=None” option of the pandas read_excel method to return a dictio-
nary of worksheets with worksheet name, dataframe as key, value pairs. The targeted
worksheet (now represented as a dataframe) is selected and updated with anonymized
values. Then the updated dataframe is written back to the appropriate worksheet
within the excel file.

Simply rerun the program to produce datasets and visualizations incorporating the
anonymized personal information.

anonymize master.xlsx

The aptly named anon_master function is used to anonymize the master.xlsx file. The
user may select to anonymize any or all of the following attributes:

• last names (lname)

• employee numbers (empkey)

• birth date (dob)

5.6. program demonstration 125

seniority_list Documentation, Release 0.65

• hire date (doh)

• longevity date (ldate)

A copy of the original master.xlsx file will be saved as master_orig.xlsx.

The function will generate new employee numbers (empkey) and last names (lname)
by default.

All of the names in the “lname” column will be replaced with randomly generated sub-
stitute strings, and all empkeys will be replaced with substitute integer values. Emp-
keys will still begin will the appropriate employee group code number.

import functions as f

f.anon_master(<case name>)

Note: The <case name> placeholder in the code examples must be replaced with the
string name for the case study, such as “sample3” or “acme”.

To anonymize any or all of the date columns, set the “date” option to True.

f.anon_master(<case name>, date=True)

The default action is to adjust hire dates and longevity dates together from zero to
five days forward, and separately (with different random sequence) adjust birth dates
forward in the same fashion. These parameters are all adjustable with various inputs.

Another option related to randomizing date, “sampling”, is also available to the
user either through an option with the anon_master function, or by using the sam-
ple_dataframe function directly. Using the anon_master function, a sample, or subset,
of a master list (by rows) may be randomly selected for testing or other purposes by
setting the “sample” option to True. Sample size may be set with with a row count
(“n”) input or by a decimal fraction (“frac”) input. Below, the “frac” input will direct
the program to randomly select .2 or 20% of the rows in the master_df dataframe for
the output.

f.anon_master(<case name>, sample=True, frac=.2)

All or none of anonymizing options discussed above may be applied to a master
dataframe sample.

The modified excel file output from the anon_master function will be saved as ex-
cel/<case name>/master.xlsx.

126 Chapter 5. user guide

seniority_list Documentation, Release 0.65

anonymize pay_tables.xlsx

The underlying compensation information for the data model may be replaced with
substitute data using the anon_pay_table function. The original hourly pay data may
be reduced or increased, proportionally or disproportionally. A copy of the original
pay date will be stored as pay_tables_orig.xlsx.

import functions as f

f.anon_pay_table(<case name>)

The “mult” input is a multiplier used to proportionally transform all of the pay rate
data at once. The “mult=.5” input below would produce modified pay rates equal to
50% of the original rates.

f.anon_pay_table(<case name>, mult=.5)

The pay rates data may also be “randomized” in a disproportionate manner by setting
the “proportional” input to False. The data will be altered with a fixed algorithm.

f.anon_pay_table(<case name>, proportional=False)

reversion to original data

The copy_excel_file function includes a “revert” option which will delete an
anonymized file and replace it with the original data.

Restore the master.xlsx file:

f.copy_excel_file(<case name>,
'master',
revert=True)

Restore the pay_tables.xlsx file:

f.copy_excel_file(<case name>,
'pay_tables',
revert=True)

5.6. program demonstration 127

seniority_list Documentation, Release 0.65

5.7 program restoration

If for some reason, a portion of the code base is accidentally deleted or corrupted,
simply save all custom input files to a directory outside of the main seniority_list
folder, then delete the main seniority_list folder and reinstall the program. After
reinserting the input files in the proper locations, the program will be ready to operate
again.

Specific files to preserve for reinsertion after reinstalling the program:

• entire case-specific folders within the excel folder which hold Excel input files

• any edited lists (p_edit.pkl) and/or datasets (ds_edit.pkl) from use of the editor
tool

All other files are quickly reproduced when the program is run.

128 Chapter 5. user guide

CHAPTER

SIX

EXCEL INPUT FILES

seniority_list is designed to produce comprehensive datasets reflecting the data
model(s) described by the user. The information and the data model description neces-
sary for this process is transmitted to seniority_list through simple spreadsheet work-
books.

While the Microsoft Excel program may be used to produce the workbooks, any
spreadsheet program may be used to work with seniority_list as long as it can pro-
duce .xlsx files (such as LibreOffice Calc). The reference to “Excel” throughout this
user guide refers to .xlsx files, not specifically the Excel program.

There are four Excel files required as inputs for each case study. They are located
within an appropriately-named folder, created by the user. There may be many differ-
ent case study folders within seniority_list ant any one time. The case study folders
are located within the excel program folder.

excel/<name_of_case_study>/

With our hypothetical case, this would translate to a folder and file as such:

excel/southern_acme/

The sections below will walk through each of the four Excel input files and will provide
detailed data and formatting requirements for each of them.

Note: The task of formatting input files as described below will be mag-
nitudes simpler if another case study folder is copied into the excel folder,
renamed to match the new case study name, and the workbooks therein
modified as appropriate.

In the following image, the highlighted section within the sample3 folder shows the
excel files included with the program for the sample case study. The name of the
sample case study included with the seniority_list program is “sample3”. For our
theoretical case (“southern_acme”), the user would copy the sample3 folder, paste it

129

seniority_list Documentation, Release 0.65

back into the excel folder, and rename it “southern_acme”. The user would then open
the Excel workbooks in the southern_acme folder and modify the contents of the
worksheets as appropriate.

Fig. 1: tree view of seniority_list package, with the Excel input files highlighted

Note: All date inputs must be formatted as dates within each spreadsheet
input file. Right-click on any cell or group of cells containing dates and
select “format cells” or something similar and verify date format. If the
date inputs are actually formatted as text even though they look like dates,

130 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

the program will not be able to generate the files needed to run the program.

6.1 master.xlsx

The master.xlsx workbook provides basic employee data to the program:

Employee data (for each employee)

• unique employee key (number)

• employee group membership

• last name

• date of birth

• date of hire

• longevity date

• special group membership

• furlough status

• work status (active or inactive)

• order within employee group

Fig. 2: master.xlsx file format example

master.xlsx contains only one worksheet and the name of the worksheet is unimportant.

master.xlsx contains information for the employees of all groups. The physical order
of the list is unimportant at this step, as long as the “eg_order” (employee group order,
or order within each group) column data value is correct, even if the list is not sorted
according to this value.

6.1. master.xlsx 131

seniority_list Documentation, Release 0.65

Note that since there is only one master list stored within the program, any employee
data discrepancies which may exist between the information supplied by the various
parties must be resolved as part of the data preparation phase.

6.1.1 master.xlsx format guide

Do not add any additional columns to the worksheet, such as a row count column. Only
include the columns shown above and described below, with the exact column names
in the first row, in lower case. Columns A, B and G through J should be formatted as
numbers (integers), column C as strings (text or general), and columns D through F as
dates (format YYYY-MM-DD).

The master.xlsx employee data worksheet must have one row for each employee and
columns of attributes for each employee as follows:

1. empkey (standardized employee number, integer)

Recommended format: employee number + (10,000,000 * eg (em-
ployee group) number)

#23456 in eg 1 becomes #10023456

#23456 in eg 2 becomes #20023456

2. eg (employee group, integer) Assign the same number (i.e. 1, 2, etc.) in this
column to each member of the same group. Always begin with the number
one and use sequential numbers for other groups. This format is important
for proper operation of other functions within the program.

3. lname (last name, string) lowercase

4. dob (date of birth, date format) Date of birth is used to calculate retirement
date using a retirement age input. The program will correctly compensate
for leap years.

5. doh (date of hire, date format) Normalized initial class date

6. ldate (longevity date, date format) Date for pay longevity and/or non-furlough
time calculations

7. sg (special group, integer (1 or 0)) Employees with special job conditions are
marked with a 1, others with a 0. If there are no employees with special job
conditions, the values for the entire column should be zeros.

8. fur (furlough, integer (0 or 1)) Furloughed employees are marked with a 1, all
others with a 0. If there are no furloughed employees, the values for the
entire column should be zeros.

9. line (line, integer (0 or 1)) Line (active) employees. Active employees are
marked with a 1, others (sick leave, supervisory, etc.) are marked with a

132 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

0. If there are no inactive employees (unlikely), the values for the entire
column should be zeros.

10. eg_order (employee group order, integer) A number that represents the cor-
rect list order within each employee group, starting with 1 for each employee
group. These numbers are independent of a combined list number.

The information within master.xlsx is read by seniority_list and is stored within the dill
folder as a pandas dataframe, master.pkl. The dataframe structure matches the work-
sheet structure with the addition of a calculated retirement date column (“retdate”).

6.2 proposals.xlsx

The proposals.xlsx workbook provides the following information to the program:

Integrated list data (for each proposal)

• order by unique employee number (empkey)

• proposal names (as set by worksheet names)

Fig. 3: example list order, used to order skeleton file

The proposal orderings are derived from the proposed integrated lists supplied by the
parties. There is no limit imposed by seniority_list to the number of proposals which

6.2. proposals.xlsx 133

seniority_list Documentation, Release 0.65

may be included on separate worksheets.

Note: seniority_list may process list orderings from other sources (the editor tool and
the list_builder.py script). These features are discussed within the user guide.

6.2.1 proposal.xlsx format guide

The proposals.xlsx Excel file is a multi-sheet workbook, with each sheet containing a
different list ordering proposal. The names of the worksheets are incorporated into the
names of the resultant dataset names and will be the reference when working with the
various outcomes for analysis and plotting. Therefore, the names of the worksheets
should reflect the proposal therein. With our hypothetical integration study, the work-
sheets should be named “southern” and “acme” (or a shorter abreviation), reflecting
the proposals from each group. The proposal names should be limited to a maximum
of 10 characters. Short proposal names are preferred, because these names will be
used as inputs to many of the plotting functions.

The worksheets must contain at least one column with the header “empkey” (em-
ployee number key, exact spelling, lower case) containing the unique empkeys in the
proposed order. The “order” column is not technically required for program operation
but may be included as a user convenience with no detriment to program operation.
The “empkey” column should be formatted as a number (integer), not text.

Each proposal must contain the same list of empkeys (employee numbers), reflecting
the active employees as determined by the master.xlsx file “line” column.

6.3 pay_tables.xlsx

pay_tables.xlsx provides the following information to the program:

Compensation

• pay rate tables for each basic job level, employee longevity, and
contract year category

• pay rates for an interim period

• number of modeled pay hours per month for each job level, basic
and enhanced

Jobs

• basic-to-enhanced job conversion data

• job level text descriptions

134 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

The program uses the data supplied from the pay_tables.xlsx workbook to create opti-
mized compensation lookup files which are used when the datasets are generated. The
data is also used to create a multi-sheet Excel workbook containing computed monthly
pay tables and job level hierarchy tables. This workbook, pay_table_data.xlsx, is writ-
ten to a case study folder within the reports folder. The workbook format permits the
computed pay data to be reviewed by the user.

The pay-related files are created when the build_program_files.py script is run.

Fig. 4: files produced from pay_tables.xlsx data

basic vs. enhanced job levels

6.3. pay_tables.xlsx 135

seniority_list Documentation, Release 0.65

seniority_list is designed with the capacity to handle two different job hierarchy
methodologies.

The first method is a basic mode which assumes a “stovepipe” or linear movement
upwards through the distinct job levels, each of which have a defined compensation
rate and a uniform number of monthly pay hours within each job level.

The second method is the “enhanced” mode which offers additional job level layers
for the program data model when it is appropriate. This would occur when contractual
or other provisions provide for some workers to receive less monthly pay hours than
other workers at the same compensation level.

Note: It is not a requirement to incorporate “enhanced” job levels within the model
when they do not exist for the industry case or are not desired. In that case, the “en-
hanced_jobs” value on the “scalars” worksheet within settings.xlsx should be set to
“False”.

For example, assume that an industry contract defines five separate job levels, ranging
in hourly pay from $20/hour to $100/hour, and assumes each worker will be paid
160 hours/month. In this case, the “basic” mode of job hierarchy is appropriate and
completely sufficient to model job and compensation projections.

However, if that industry contract further defines that some workers at each level will
work and be paid 120 hours/month, this doubles the number of job levels to be con-
sidered in an integration analysis, because each job level contains two categories of
monthly pay hours. It also complicates the career progression model, since employees
will likely prefer positions based on total compensation amounts, not just hourly rate
of pay.

The job hierarchy mode is selected via the “enhanced_jobs” value (True or False)
within the settings.xlsx workbook (“scalars” worksheet).

6.3.1 pay_tables.xlsx format guide

The pay_tables.xlsx workbook contains compensation data on two worksheets with
specific names, in lower case:

• “rates” formatted hourly pay rate table for basic job levels including
contractual pay changes and longevity increments

• “hours” small table containing basic and enhanced job level hours per
month and descriptive job codes

136 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

Fig. 5: worksheet tabs within the Excel pay_tables.xlsx workbook

rates

The pay table “rates” worksheet has a straightforward formatting layout. The user
must create the the worksheet from contractual pay information. There is one pay data
worksheet for each case study.

Fig. 6: pay_tables.xlsx format example, “rates” worksheet

The worksheet can be thought of as employee pay rate tables for multiple years,
stacked together forming one table. Within each contractual year block, the pay rates
for the various job levels are positioned vertically from highest to lowest and longevity
pay increases are positioned horizontally, lowest to highest.

All columns are formatted as numbers. The header row contains a “year” column and a
“jnum” column (both lower case), and other columns with integer headers representing
the longevity year pay steps (1 through the top of scale year).

The data in the year column is a float type (decimal number) representation of the
applicable contract pay year. The year 2018 would be represented as “2018.0”.

The year column may include one or more exception values (“2014.1” in the image
below) which allow for a temporary or interim pay scale(s) if they exists. An interim

6.3. pay_tables.xlsx 137

seniority_list Documentation, Release 0.65

pay scale might exist for a certain transitional time period such as a partial year at
new contract pay rates. A pay exception year value and duration is set using the
“pay_exceptions” worksheet in settings.xlsx. Simply adding .1 to the year in which a
pay exception occurs will allow for the fastest follow-on indexing calculations which
utilize this data.

The data within the “jnum” (job number) column represents the different job levels
within the data model. A job level of 1 represents the highest paid position, with sub-
sequent incremental job level numbers representing job levels with decreasing com-
pensation rates. The program will automatically insert an additional job level after the
lowest job level to represent employees who are furloughed (or who could become
furloughed in various modeling scenarios) when the Excel file is read. A model with
8 active job levels will be modified to have job numbers 1-9 in the “jnum” column
for each contract year in the “year” column, with job number 9 representing furlough
with no pay. This can be reviewed by examining the pay_table_data.xlsx file within
the reports folder after running the build_program_files.py script.

The year longevity columns (integers) hold the hourly compensation data for employ-
ees with various levels of service with the enterprises. Column 1 would be the rates for
employees working in their 1st year of service, column 5 would contain the rates for
employees working in their 5th year, etc. up to the maximum longevity scale. Employ-
ees with more years than the maximum longevity scale are capped at the maximum
longevity rates.

Note that the year column has repeating row values for each of the job levels. Also,
the pay exception built into this pay table is evident with all the rows with 2014.1 in
the “year” column. The user may directly examine the Excel files included with the
program for further clarity (excel/sample3/pay_tables.xlsx).

hours

This worksheet supplies the program data model with the number of monthly pay
hours applicable to each job level. In other words, by inputing data into this table, the
user sets the average number of pay hours to be allocated within each job level, for both
the basic (no full- and part-time pay within job levels considered) and the enhanced
(including full- and part-time jobs within job categories) job data model options.

138 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

Fig. 7: pay_tables.xlsx format example, “hours” worksheet

The “jobstr” column (“job string”) is used by the program to provide a short job level
description in text form for various chart legends and titles. If an enhanced model
is selected, designated full- and part-time suffixes will be added to the enhanced job
descriptions appropriately. The suffixes are specified by the user through the “en-
hanced_job_part_suffix” and “enhanced_jobs_full_suffix” values provided through
the “scalars” worksheet within the settings.xlsx workbook. The enhanced job strings
may be viewed on the “enhanced ordered” worksheet within the pay_table_data.xlsx
file within the reports/<case study> folder after the program files have been con-
structed.

The “jnum” column (job number) contains the integer code value for each non-
furlough basic job level within the data model, in sequential order. These job numbers
correspond to the job numbers in the “jnum” column in the “rates” worksheet.

The “basic_hours” column contains a user-specified number of monthly pay hours for
each job level. The number of pay hours may vary for different job levels. Calculated
values derived from this column are utilized by the program when the user specifies a
basic, non-enhanced data model, by setting the “enhanced_jobs” option to “FALSE”
on the “scalars” worksheet within the settings.xlsx workbook.

The “full_hours”, “part_hours”, and “full_pcnt” columns contain data pertaining to
enhanced job models. As in the “basic_hours” column, the values in each of these
columns may vary from job to job, as required.

• full_hours - the number of monthly hours within a job level for “full-time” em-
ployees

• part_hours - the number of monthly hours within a job level for “part-time” em-
ployees

• full_pcnt - the percentage of all jobs within a job level to be allocated as “full-
time”. The remaining percentage of jobs will be allocated as “part-time”.

Even if a basic data model is selected by the user, the above columns must remain in
place to prevent a calculation error, though the enhanced job model inputs will not be
used for further program analysis.

6.3. pay_tables.xlsx 139

seniority_list Documentation, Release 0.65

6.3.2 job level hierarchy

seniority_list uses a job-level hierarchy based on compensation. This hierarchy deter-
mines the order of job assignments and employee compensation throughout the entire
data model.

A basic or non-enhanced data model assumes that the proper value order of job levels
is as supplied by the user through the pay_tables.xlsx input workbook, with job level
1 the best-paying and most desirable, and therefore, most “senior” job level.

However, it is possible that some job level(s) may compensate workers proportionally
more or less in certain pay-scale longevity years as compared to other job levels. This
means that independent sorts of job level compensation for all contract years and/or
longevity steps could show slightly different orderings when the underlying job level
pay rates vary enough over contract years or, more likely, contract longevity steps.

When an enhanced model is used, additional discrepancies in compensation sorts may
be introduced, when the issue above is combined with the more numerous enhanced
job levels.

Fig. 8: uneven enhanced job level sort (highlighted with color conditional formatting for clarity),
primarily job levels 11 and 14 for longevity steps 1 through 6, within contract year 2018. In this
case, the chosen sort index is contract year 2018, longevity step 7 (outlined).

Because of this possibility it is recommended that the user carefully examine the
“basic_ordered” and “enhanced_ordered” worksheets within the pay_table_data.xlsx
workbook, located within reports folder. This workbook is automatically generated by
seniority_list when the build_program_files script is run. These worksheets display
the job level hierarchy created by the program, according to a compensation sort for a
particular contract year scale and contract longevity step. These values are set and ad-
justed by the user through the “pay_table_year_sort” and “pay_table_longevity_sort”
value inputs in the “scalars” worksheet within the settings.xlsx input excel file. A

140 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

contract year and longevity step should be selected which provides the best overall
compensation sorts for the life of the model as indicated by the information in the
pay_table_data.xlsx each time new program files are generated.

The job level sorting algorithm will ensure that the order of jobs will be the same in
all contract years and longevity steps throughout the data model. If the user wishes
to adjust the pay level sort indexing, the settings.xlsx workbook must be saved after
inserting the new values and the build_program_files script must be rerun. The results
of this procedure will include replacing the pay_table_data.xlsx file with a new file
containing the updated results.

Job compensation sort variation will not exist in all case studies, and in fact is likely
to be an unusual situation. When it does exist, seniority_list provides a method to
minimize its effect by allowing users to chose a pay sorting index point. This offers
the best overall solution to construct a consistent job level hierarchy, while controlling
(usually minor) uneven job level compensation rates uniformly for all of the employee
groups.

6.4 settings.xlsx

settings.xlsx provides the following information to the program:

Jobs

• job counts

• job count changes schedule

Compensation

• annual compensation increase or reduction after contract expira-
tion

• contract top of scale longevity (years)

• pay raise option on/off

• pay raise percentage

• pay scale exception year code(s) and duration(s)

• pay scale exception start/end dates

• compute pay measures on/off

• pay table year and longevity for job level hierarchy sort

Furlough

• recall schedule

6.4. settings.xlsx 141

seniority_list Documentation, Release 0.65

Descriptions

• employee group number to text descriptions for stats/charting out-
put

• jobs to text descriptions for stats/charting output

• some of the color lists for visualization

• dataset attribute descriptions

Job Assignment Special Conditions

• schedule

• jobs affected

• other supporting data

Dates

• starting date

• delayed implementation date

Special Conditions

• pre-existing job rights

• ratio job assignment

• ratio count-capped job assignment

• minimum count job assignment

Retirement Age

• retirement age increase on/off

• retirement age increase dates and age increase

Merger-specific Information

• abbreviations, proposal names, job descriptions, chart colors

• label dictionaries

Integration Delay

• delayed implementation (on/off)

Jobs

• compute results using job change information vs a static number
of jobs (on/off)

• number of job levels (enhanced/basic)

Furlough

142 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

• compute incorporating recall (on/off)

• ignore time furloughed for longevity calculation (on/off)

• include furloughed employees when calculating certain list per-
centages (on/off)

Calculation Type

• no bump-no flush on/off

• actives_only on/off

• lspcnt calculation on/off

• columns to include in the dataset

• compute cat_order (global job category rank) on/off

File Storage

• save_to_pickle on/off

The settings.xlsx workbook contains many worksheets and is the source for the four
dictionaries which seniority_list uses to produce datasets and build chart displays, with
the exception of much of the color dictionary which is generated internally from the
matplotlib colormap collection.

6.4. settings.xlsx 143

seniority_list Documentation, Release 0.65

Fig. 9: The attribute, color, and settings dictionary files

144 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

6.4.1 settings.xlsx format guide

The settings.xlsx workbook contains multiple worksheets with various formatting re-
quirements. This section describes those requirements and is applicable to any case
study.

The settings.xlsx file is customized by manually updating worksheet cell values and
possibly adding or deleting certain rows/columns as appropriate for each case study.

It is important to not change the structure of the worksheets or the “headers” (first row
column names) in each worksheet except as described below. Many of the Python
routines are looking for a specific layout to be able to gather and process the data
correctly.

Except for the “scalars” and “attribute_dict” worksheets (the first two), the definitions
below refer to columns in each sheet.

All dates used in seniority_list to designate a calendar month or starting and ending
dates are end-of-month dates. “2015-12-31” is ok, “2015-01-01” will fail.

The screenshots below walk through each worksheet of the sample (“sample3”) case-
specific settings.xlsx file. The displayed values in the screenshots are from the sample
case study which must be changed to the appropriate values for each actual case study,
using the guidance below.

The 14 worksheets within the settings.xlsx workbook:

1. scalars
2. attribute_dict
3. ret_incr
4. pay_exceptions
5. job_counts
6. job_changes
7. recall
8. prex
9. ratio_cond
10. ratio_count_capped_cond
11. proposal_dictionary
12. eg_colors
13. basic_job_colors
14. enhanced_job_colors

6.4. settings.xlsx 145

seniority_list Documentation, Release 0.65

scalars

The “scalars” worksheet contains a column of options and a column of corresponding
values. The items in the value column are set by the user as appropriate/desired. The
items in the option column should not be changed - the program looks for these specific
phrases when it operates.

Fig. 10: Program options are set on this sheet along with many other single value variables.

146 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

GENERAL

• enhanced_jobs : boolean

True - use enhanced job levels model
False - use basic job levels model

• job_levels_basic : integer

The number of job levels in the model without any enhancement for
full- or part-time stratification. Include jobs that are found in any em-
ployee group even if those jobs are not found in all employee groups.

• job_levels_enhanced : integer

Total count of part- and full-time job levels. Normally double the num-
ber of basic levels.

• enhanced_jobs_full_suffix : string

The suffix to append to full-time job level descriptions, for print-out
within the pay_table_data.xlsx report, stored within the case-specific
folder in the reports folder.

• enhanced_jobs_part_suffix : string

The suffix to append to part-time job level descriptions, for print-out
within the pay_table_data.xlsx report, stored within the case-specific
folder in the reports folder.

• compute_with_job_changes : boolean

True - use job count changes in model
False - assume static or constant job counts for model

• no_bump : boolean

True - compute data model utilizing the no-bump, no-flush system
False - allow full flush and bump for job assignment

• recall : boolean

True - include recall of furloughed employees within data model
False - inhibit recall

• discount_longev_for_fur : boolean

True - do not apply furlough time towards longevity time
False - allow furlough time to be included as longevity time

• lspcnt_calc_on_remaining_population : boolean

True - include furloughed employees and employees remaining each
month within denominator for list percentage (lspcnt) calculations

6.4. settings.xlsx 147

seniority_list Documentation, Release 0.65

False - include furloughed employees and the greater of employees
remaining or jobs available each month within denominator for list
percentage (lspcnt) calculations

• starting_date : date string

The effective data of the merger. This date is different than the im-
plementation date. The effective date is the date when participating
employees and the corresponding list data is frozen for modeling pur-
poses.

• delayed_implementation : boolean

True - permit independent operation of the employee group seniority
lists until the implementation date to be included within the integrated
dataset
False - calculate dataset with an integrated seniority list commencing
on the starting_date

• implementation_date : date string

The anticipated date when the separate employee seniority lists will be
integrated into one list. seniority_list will model each group separately
until this date.

• integrated_counts_preimp : boolean

True - Assign integrated job counts prior to implementation date when
calculating integrated dataset.
False - Use separate employee group job counts prior to the
implementation date when calculating integrated dataset.

COMPENSATION DATA

• compute_pay_measures : boolean

True - compute and include compensation-related metrics within the
calculated dataset(s). The dataset will include the following columns:

['mlong', 'ylong', 'scale', 'mpay', 'cpay']

False - do not compute compensation-related metrics. This will cut
down on dataset computation time when pay-related columns are not
needed.

• future_raise : boolean

148 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

Set to True if the model will incorporate an assumed raise at the end of
the current contract.

• annual_pcnt_raise : float

Assumed annual increase (or decrease) in pay rates if the future_raise
input is True. A two percent annual increase would be set as .02

• top_of_scale : integer

The number of longevity pay levels. The model assumes the same pay
rates for all groups, before and after the implementation date.

INDEXED PAY TABLE

• pay_table_year_sort : float

The calendar year within the pay table to use for the model job level
hierarchy sort. The year 2018 would be represented as 2018.0

• pay_table_longevity_sort : integer

The longevity year within the pay table to use for the model job level hi-
erarchy sort (used in combination with the pay_table_year_sort input).

RETIREMENT

• init_ret_age_years : integer

Initial retirement age in years. This is described as initial, because
the retirement age may be increased in a future year(s) within the data
model.

• init_ret_age_months : integer

If the init_ret_age_years input above is not an even year value, use this
input to add the number of months needed to represent the correct retire-
ment age. A retirement age of 65.5 would mean that this input should
be 6, to represent 6 months. Set at zero if the retirement age is an even
year.

• ret_age_increase : boolean

Set to True if the model will incorporate an increase in retirement age.
If False, the ret_incr variable below will be ignored.

BASIC TO ENHANCED CONVERSION

• dist_sg : string

If the enhanced_jobs option value is True, meaning a data model con-
taining enhanced job levels has been selected, this input will determine
how basic job level counts are converted and distributed to enhanced
job levels.

6.4. settings.xlsx 149

seniority_list Documentation, Release 0.65

For example, if enhanced job levels 3 and 5 are the full- and part-time
jobs associated with basic level 2, the user may direct that all of the
jobs from level 2 be assigned to job 3 (full-time), to job 5 (part-time), or
divided between the two according to the percentages specified within
the job dictionary (jd variable).

The possible value inputs are:

['full', 'part', 'split']

The dist_sg (distribution to special group) input controls the distribution
of job counts from basic job levels affected by pre-existing job rights to
the corresponding enhanced job level counts.

• dist_ratio : string

Same as above, but controlling the ratio_cond enhanced job count con-
version/distribution.

• dist_count : string

Same as above, but controlling the ratio_count_capped_cond enhanced
job count conversion/distribution.

OPTIONAL DATASET COLUMNS (default is True for all, some functions may not
operate without some of these columns existing within the calculated dataset(s))

• compute_job_category_order : boolean

True - generate a “cat_order” job rank metric
False - omit the “cat_order” job rank metric

• add_eg_col : boolean

True - Add an “eg” column to the dataset containing an employee
group code for each employee for every month (integer)
False - Do not include an “eg” column within the calculated dataset.

• add_retdate_col : boolean

True - Add a “retdate” column to the dataset containing employee
retirement dates
False - Do not include a “retdate” column within the calculated dataset.

• add_doh_col : boolean

True - Add a “doh” column to the dataset containing employee date of
hire
False - Do not include a “doh” column within the calculated dataset.

• add_ldate_col : boolean

150 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

True - Add an “ldate” column to the dataset containing employee
longevity date
False - Do not include an “ldate” column within the calculated dataset.

• add_lname_col : boolean

True - Add an “lname” column to the dataset containing employee last
name
False - Do not include an “lname” column within the calculated
dataset.

• add_line_col : boolean

True - Add a “line” column to the dataset indicating employee active
status (1 is active, 0 is inactive)
False - Do not include a “line” column within the calculated dataset.

• add_sg_col : boolean

True - Add a “sg” column to the dataset indicating employees with
special pre-existing job rights (“special group”, marked with a 1 vs 0)
False - Do not include a “sg” column within the calculated dataset.

• add_ret_mark : boolean

True - Add a “ret_mark” column to the dataset and mark an
employee’s retirement month with a 1. This was developed to be used
when the retirement age changes within the model, but may be used as
a final month flag as a convenience.
False - Skip the “ret_mark” column

• save_to_pickle : boolean

True - save calculated program datasets to disk
False - calculated datasets will not be written to disk

6.4. settings.xlsx 151

seniority_list Documentation, Release 0.65

attribute_dict

Fig. 11: The “attribute_dict” sheet is the source for the dict_attr.pkl file, which is a column name
to column description dictionary used for plotting labels.

The values on this worksheet are not normally changed unless the user desires to
change the description associated with an attribute. Changes here will be reflected
in certain chart titles and labels.

152 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

ret_incr

Fig. 12: specify retirement age increase(s), by date and increase in months

• month_start: month end date of month to begin retirement age increase (integer)

• month_increase: increase in retirement age in months (integer)

If the user elects to include an increase in the data model retirement age, this worksheet
will provide the program with the necessary inputs. The user simply adds a row for
each planned age increase with the month end date to begin the new retirement age,
along with the number of months to increase the age.

The program transforms the worksheet data into a tuple of tuples for program con-
sumption. The example data above would be stored within the settings dictionary as
follows:

{'ret_incr': (('2018-01-31', 12), ('2020-01-31', 12))}

pay_exceptions

Fig. 13: designate pay_exception periods with separate line entries

Pay rate change periods that do not occur on a calendar year basis are entered on
this worksheet. There is no limit to the number of periods and the duration of any
period may be set to any monthly time span. “year_code” entries in the first column
must correspond to a rate schedule in the pay_tables.xlsx “rates” worksheet, under the
“year” header. Additional pay exceptions may be designated simply by adding another
row of information.

If the case study compensation data does not contain any pay exceptions, enter “no”
in column A beneath the “year_code” header (retain the pay_exceptions worksheet for
proper program operation).

6.4. settings.xlsx 153

seniority_list Documentation, Release 0.65

If the pay exception period is effective for only one month, enter that month in both
the “start_date” and “end_date” columns, as shown in the example above.

The program will convert each row of worksheet information into a Python dictionary,
using the “year_code” column as keys and a list of the “start_date” and “end_date”
date values as values. The worksheet example above would be stored by the program
as such:

{2014.1: [Timestamp('2014-12-31 00:00:00'),
Timestamp('2014-12-31 00:00:00')]}

The pay exception information is used by seniority_list during the monthly compen-
sation index construction process.

job_counts

Fig. 14: define the starting number of jobs in each level, by employee group

• job: basic job level number codes (integer)

• eg<n>: job counts in each basic job level category for each employee group
(integer)

The “job_counts” worksheet provides an accounting of the number of basic jobs avail-
able within each job level for each employee group at the starting date of the data
model.

Basic counts will be converted to enhanced counts automatically if the “en-
hanced_jobs” input (“scalars” worksheet) is set to “True”.

In the example above, three work group counts are indicated. The user should create
one column of job counts for each employee group involved in the integration. Each
column header containing counts must begin with the letters “eg” (employee group)
and be in the order of the employee codes asssigned in master.xlsx, from left to right.
The program looks specifically for job counts in columns which begin with “eg”. If

154 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

this employee group does not have any jobs at a certain level, use a zero as a place-
holder.

The job counts are stored in the settings dictionary as a list of lists:

{'eg_counts': [[197, 470, 1056, 412, 628, 1121, 0, 0],
[80, 85, 443, 163, 96, 464, 54, 66],
[0, 26, 319, 0, 37, 304, 0, 0]]}

This input is especially important to the central job assignment routine.

job_changes

Fig. 15: Increase or decrease the number of jobs at any job level, for any time period

• job: job level affected (integer)

• start_month: month in which job change begins (integer, counted from begin-
ning of data model)

• end_month: month in which job change ends (integer, counted from beginning
of data model)

• total_change: total change in job count (positive or negative integer)

• eg<n>: job change counts in each employee group, total for the employee groups
must equal the total change count. Employee count column headers must begin
with “eg”, and be in ascending order from left to right. (integer)

This worksheet provides information to the program if the user elects to model a sce-
nario where the number of jobs available in one or more job levels changes over time.

The job changes always refer to the basic job levels. If an enhanced model is selected,
the job changes will be converted automatically to the proper number of enhanced jobs
in each level.

Each job change event row will be programmatically converted to a list with the fol-
lowing format for use within seniority_list:

6.4. settings.xlsx 155

seniority_list Documentation, Release 0.65

[job level affected, [start and end month], total change, [standalone alloca-
tion]]

Example (derived from first job change event row in screenshot):

[1, [35, 64], 43, [40, 3, 0]]

The list above has been set to indicate a change in the number of jobs available at job
level 1, starting in month 35 and ending at month 64, increasing 43 jobs, with separate
employee group allocation set as 40 to group 1, 3 to group 2, and none to group 3. The
program will use an algorithm to apply an even, incremental increase in jobs at level
1 over the number of months specified and will use the allocation schedule to apply
the increase to the separate groups until the job changes occur after an implementation
date.

Job changes may be an increase or decrease (positive or negative integer) and different
job changes may occur at the same time.

Each job change list becomes an element within a list of all the job change events
when processed by the program.

The number of “eg” columns, or employee group allocation columns, must match the
actual number of employee groups. For example, if the case study only includes 2
employee groups, there would be no “eg3” column in the worksheet. Each column
header containing job change counts for a specific employee group must begin with
the letters “eg” and be in the order of the employee codes asssigned in master.xlsx,
from left to right. The program looks specifically for employee group job change
counts in columns which begin with “eg”.

recall

Fig. 16: Recall schedule information for one or more recall periods

• total_monthly: total monthly recall count (integer)

• eg<n>: monthly recall counts for each employee group. The total for the em-
ployee groups must equal the total monthly recall count. Employee count column
headers must begin with “eg”. (integer)

• month_start: month in which recall begins (integer, counted from beginning of
data model)

156 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

• month_end: month in which recall ends (integer, counted from beginning of
data model)

This worksheet provides information to the program if the user elects to model a sce-
nario where furloughed employees are recalled over time.

Each recall event schedule (row) will be programmatically converted to a list with the
following format for use within seniority_list:

[total monthly_recall_count, eg recall allocation, start_month, end_month]

Example (derived from first recall event row in screenshot):

[8, [6, 0, 2], 50, 75]

The list above has been set to indicate a recall of 8 employees per month starting in
month 50 and ending in month 75. The employee group allocation is 6 per month for
employee group 1, and 2 per month for employee group 3. The separate group recall
will apply until an implementation date. After an implementation date, the monthly
recall amount will be applied to all furloughed employees, according to a recall pri-
ority function input. The default is to recall employees by rank within the proposed
integrated seniority list (most senior first), but may be set to another method within the
mark_for_recall function (functions module).

Each recall schedule list becomes an element within a list of all the recall events when
processed by the program.

Recall schedules are ignored once all furloughees have returned to work. There may
be more than one recall schedule and recall schedules may overlap.

The number of “eg” columns, or employee group allocation columns, must match the
actual number of employee groups. For example, if the case study only includes 2
employee groups, there would be no “eg3” column in the worksheet. Each column
header containing recall counts for a specific employee group must begin with the
letters “eg” and be in the order of the employee codes asssigned in master.xlsx, from
left to right. The program looks specifically for employee group monthly recall counts
in columns which begin with “eg”.

6.4. settings.xlsx 157

seniority_list Documentation, Release 0.65

prex

Fig. 17: pre-existing job rights information, by employee group, basic job, allotment, and time
frame

• eg: employee group code (integer)

• job: basic job level (integer)

• count: job allocation count (integer)

• month_start: month in which special job right begins (integer, counted from
beginning of data model)

• month_end: month in which special job right ends (integer, counted from be-
ginning of data model)

This worksheet provides information to the program when modeling a scenario which
contains special job guarantees to a subset of employees within one or more of the
merging employee groups. These pre-existing job rights will be incorporated within
both standalone and integrated models. This type of job right would likely be part of
a previous seniority integration award or settlement.

The terms “prex” (pre-existing condition) and “sg” (special group) are used inter-
changeably.

The job rights always refer to the basic job levels. If an enhanced model is selected,
the job rights will be converted automatically to the proper number of enhanced jobs
in each level. See the “sg_dist” definition in the “scalars” worksheet discussion for
guidance on controlling how the job rights are distributed between basic and enhanced
job levels.

Each pre-existing job rights schedule (row) will be programmatically converted to a
list with the following format for use within seniority_list:

[eg, jnum, count, start_month, end_month]

Example:

[1, 5, 43, 0, 67]

158 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

The list above has been set to permit employees delineated as having special rights
from employee group 1 to be assigned up to 43 positions in job level 5, starting with
month 0 and continuing to month 67.

Employees with special job rights must be marked with a 1 in the input master.xlsx
“sg” column. This marks employees within an employee group as those employees
subject to special job assignment rights.

ratio_cond

Fig. 18: designate ratio condition employee groups, basic job(s) affected, ratio weightings, effec-
tive months, and snapshot option

• basic_job: (integer) basic job level

• group<n> columns: (integer or comma separated integers) for each “group” col-
umn, designate a ratio group by employee group code(s). If more than one em-
ployee group will make up the ratio group, enter both employee group codes,
separated by a comma, such as “2,3”.

• weight<n> columns: (integer or float) for each “weight” column, designate a
value to be used as a ratio weighting. Any number value is valid. Weights will
correspond to group codes and must be in same order as the group codes column-
wise, from left to right.

• month_start: (integer) model month in which to begin condition (from starting
date, inclusive)

• month_end: (integer) model month in which to begin condition (from starting
date, inclusive)

• snapshot: (boolean [“TRUE”, “FALSE”]) capture the existing job count ratio
which exists at the “month_start” data model month (ignores the weight column
inputs).

This worksheet provides information to the program if the user elects to model a sce-
nario which contains a prospective job assignment condition based maintaining a ratio
of jobs in a specified job level(s) between one employee group and one or more other
employee group(s).

The basic_job column always refers to the basic job levels. If an enhanced model
is selected, the job levels will be converted automatically to include enhanced jobs

6.4. settings.xlsx 159

seniority_list Documentation, Release 0.65

associated with the basic job levels or as otherwise directed by the convert function
from the converter module. See the “ratio_dist” definition in the “scalars” worksheet
discussion for guidance on controlling how the job levels are determined when using
an enhanced job level model.

The user may add or delete “group” columns and “weight” columns as required for the
case study, as long as this is done in corresponding pairs. The program will look for
and match ratio groups (“group” columns) with ratio weightings (“weight” columns)
by column order. Group and weight columns are identified by the program when
column headers begin with “group” and “weight”. It is acceptable to have entires
of zero (“0”) in a group column if necessary (with mergers involving more than two
employee groups) to ignore that group column within a row entry, as in the following
example:

Fig. 19: group 3 is not included in the basic job level 1 ratio condition and any weighting in the
“weight3” column is ignored

A zero entry in a weight column corresponding to a valid non-zero group column
will be interpreted by the conditional job assignment routine to mean that no new job
openings should be assigned to that group(s). No bump, no flush rules will protect
employees from the affected group from being displaced from current job levels. Po-
sitions available each month will be assigned to the appropriate group(s) so as to get
as close as possible to the desired job ratio(s) over time.

The ratio_cond worksheet data is programmatically combined to form a dictionary for
program operation. The dictionary is used as an argument for the assign_cond_ratio
function. Jobs are assigned to the ratio groups according to the corresponding weight-
ings beginning with the month_start and continuing until the ending date.

The function may be used in conjunction with the set_snapshot_weights function to
capture an existing ratio of jobs between ratio groups as they exist at the “month_start”
month snapshot. The snapshot weightings will be used during the condition period
only (“month_start” to “month_end”). The snapshot option is selected by a “TRUE”
cell input within the “snapshot” column.

The function will adjust the job assignment quota counts if the number of jobs avail-
able within job levels changes from month to month.

The dictionary is formed with the following format:

job level: [(employee groups), (weightings), start_month, end_month}]

Example (from first row of top example above, converted to enhanced job levels):

160 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

{1: [([1], [2, 3]), (2.48, 1.0), 34, 72],
2: [([1], [2, 3]), (2.48, 1.0), 34, 72]}

The dictionary input above has been set to distribute job assignments for job levels 1
and 2 between employee group 1 and employee groups 2 and 3 (combined) at a ratio
of 2.48:1, in data model months 34 through 72.

ratio_count_capped_cond

Fig. 20: define count-ratio condition employee groups, basic job level(s), ratio weightings, cap(s),
and effective months

• basic_job: (integer) basic job level

• group<n> columns: (integer or comma separated integers) for each “group” col-
umn, designate a ratio group by employee group code(s). If more than one em-
ployee group will make up the ratio group, enter both employee group codes,
separated by a comma, such as “2,3”.

• weight<n> columns: (integer or float) for each “weight” column, designate a
value to be used as a ratio weighting. Any number value is valid. Weights will
correspond to group codes and must be in same order as the group codes column-
wise, from left to right.

• cap: (integer) the maximum total number of jobs to distribute among the appli-
cable employee groups

• month_start: (integer) model month in which to begin condition (from starting
date, inclusive)

• month_end: (integer) model month in which to begin condition (from starting
date, inclusive)

• snapshot: (boolean [“TRUE”, “FALSE”]) capture the existing job count ratio
which exists at the “month_start” data model month (ignores the weight column
inputs). This ratio will be used for job assignments (up to the applicable job
count cap).

This worksheet provides information to the program if the user elects to model a sce-
nario which contains a prospective job assignment condition based on maintaining a
ratio of jobs in a specified job level(s) count between designated employee groups.
The condition is not applied to job assignments above the job count cap.

6.4. settings.xlsx 161

seniority_list Documentation, Release 0.65

The job column always refers to the basic job levels. If an enhanced model is selected,
the job levels will be converted automatically to include enhanced jobs associated
with the basic job levels or as otherwise directed by the convert function from the con-
verter module. See the “quota_dist” definition in the “scalars” worksheet discussion
for guidance on controlling how the job levels are determined when using an enhanced
job level model.

This data is used with the assign_cond_ratio_capped function, which assigns a limited
pool of jobs from a selected job level between one group and another group accord-
ing to a set ratio. There must be the same number of “weight” columns as “group”
columns. Entries of “0” in “group” and “weight” columns are acceptable and will
be ignored during calculations. The user may add or delete “group” columns and
“weight” columns as required for the case study, as long as this is done in correspond-
ing pairs. The program will look for and match ratio groups (“group” columns) with
ratio weightings (“weight” columns) by column order. Group and weight columns are
identified by the program when column headers begin with “group” and “weight”.

Alternatively, a minimum job count may be assigned to one employee group only,
by listing the employee group in a “group” column, assigning a corresponding pos-
itive weighting (any other weightings should be zero), and assigning a “cap” as the
minimum job allocation for the employee group.

As with the ratio condition above, the function may be used in conjunction with the
set_snapshot_weights function to capture an existing ratio of jobs between ratio groups
as they exist at the “month_start” month snapshot. The snapshot weightings will be
used during the condition period only (“month_start” to “month_end”). The snapshot
option is selected by a “TRUE” cell input within the “snapshot” column.

In the case where there are less jobs than the cap amount, the actual number of jobs
available will be distributed according to the weightings.

The data is programmatically converted to a dictionary with the following format:

job level: [(employee groups), (weightings), cap, start_month, end_month]

Example (from first row of example above, converted to enhanced job levels):

{1: [([1], [2]), (2.48, 1.0), 191, 34, 94],
2: [([1], [2]), (2.48, 1.0), 127, 34, 94]}

The dictionary input above has been set to distribute job assignments for job levels 1
and 2 between employee group 1 and employee groups 2 and 3 (combined) at a ratio of
2.48:1, in data model months 34 through 72. The conditional assignment will operate
for up to the first 191 jobs in job level 1, and up to the first 127 jobs in job level 2.

162 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

proposal_dictionary

Fig. 21: proposal number to description dictionary data

• eg: employee group code, insert a zero to represent standalone data for plotting
(integer)

• short_descr: short descriptive labels for chart labels and titles

• long_descr: longer descriptive labels for chart labels and titles

This worksheet provides information to the program which is used for some charting
labels and titles relating to employee groups. It would be more correct to think of this
worksheet as an employee group dictionary. Future coding work will change the name
of this worksheet.

The data contained on this worksheet is transformed into two dictionaries. The “eg”
column will be the integer keys in both, and the other columns will each make up the
value items in separate dictionaries.

The “eg” column should contain the employee group codes in low to high sequential
order, with the addition of a zero at the beginning to represent standalone data plotting.

The brief descriptions in the “short_descr” column will be the values in the “p_dict”
dictionary:

{0: 'sa',
1: '1',
2: '2',
3: '3'}

The slightly longer descriptions in the “long_descr” column will be the values in the
“p_dict_verbose” dictionary:

{0: 'Standalone',
1: 'Group 1',
2: 'Group 2',
3: 'Group 3'}

6.4. settings.xlsx 163

seniority_list Documentation, Release 0.65

Both dictionaries are stored in the settings dictionary.

eg_colors

Fig. 22: user-defined charting colors corresponding to the employee groups

• eg: employee group codes, one row for each group (integer)

• eg_colors: chart colors to use when plotting values representing the employee
groups (color values)

• eg_colors_lgt: alternate lighter chart colors to use when plotting values repre-
senting the employee groups (color values)

• lin_reg_colors: sample set of colors which may be used with the editor tool
when plotting polynomial regression lines (color values)

• lin_reg_colors2: sample set of colors which may be used with the editor tool
when plotting polynomial regression lines (color values)

• mean_colors: sample set of colors which may be used with the editor tool when
plotting average value lines (color values)

This worksheet provides lists of colors which are used to represent the employee
groups or values associated with the employee groups when creating charts.

The lists are arranged vertically on the worksheet. The rows represent the employee
groups and must be in employee group code sequential order, lowest to highest. The
program will arrange each worksheet column into a dictionary with the color name
(worksheet column header) as the key, and the color values in each column as the
value (as a list).

Example (for the 3 employee group example in the image above, “eg_colors” column):

{'eg_colors': ['#505050', '#0081ff', '#ff6600']}

The rest of the color lists would be treated similarly. The output dictionaries from this
worksheet are added to the color dictionary file, dict_color.pkl.

164 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

basic_job_colors

Fig. 23: user-defined job level charting colors

• job: basic job level (integer)

• red: float value from 0.0 to 1.0

• green: float value from 0.0 to 1.0

• blue: float value from 0.0 to 1.0

• alpha: float value from 0.0 to 1.0

This worksheet provides user-defined basic job colors in red, green, blue, alpha float
format.

While the make_color_list plotting function provides many lists of colors for plotting,
the user may wish to define specific color values to represent the various job levels
within the data model.

List of color codes used by various plotting functions to represent job levels. The
example color codes are in [red, green, blue, and alpha] float format, but color hex
codes or color names may be used as well. The rgba color codes may be derived from
the make_color_list plotting function, and then copied into the worksheet cells.

The length of these lists is: job level count + 1. The last color value will be used to
represent furlough. The example below shows a color list for a case study with 8 basic
job levels.

If the “scalars” worksheet “enhanced_jobs” input is False, the program will store the
information on this worksheet in the color dictionary as a list of color lists:

{'job_colors': [[0.65, 0.8, 0.89, 1.0],
[0.14, 0.48, 0.7, 1.0],
[0.66, 0.85, 0.51, 1.0],

(continues on next page)

6.4. settings.xlsx 165

seniority_list Documentation, Release 0.65

(continued from previous page)

[0.28, 0.62, 0.21, 1.0],
[0.97, 0.53, 0.53, 1.0],
[0.9, 0.21, 0.16, 1.0],
[0.99, 0.79, 0.49, 1.0],
[0.94, 0.54, 0.2, 1.0],
[0.5, 0.5, 0.5, 1.0]]}

enhanced_job_colors

Fig. 24: user-defined job level charting colors

• job: enhanced job level (integer)

• red: float value from 0.0 to 1.0

• green: float value from 0.0 to 1.0

• blue: float value from 0.0 to 1.0

• alpha: float value from 0.0 to 1.0

The description for this worksheet is almost identical to the “basic_job_colors” guide
above. However, there will normally be twice as many job colors (one for each en-
hanced job level) plus a furlough color value.

If the “scalars” worksheet “enhanced_jobs” input is True, the program will store the
information on this worksheet in the color dictionary as a list of color lists:

166 Chapter 6. excel input files

seniority_list Documentation, Release 0.65

{'job_colors': [[0.65, 0.81, 0.89, 1.0],
[0.31, 0.59, 0.77, 1.0],
[0.19, 0.39, 0.7, 1.0],
[0.66, 0.85, 0.55, 1.0],
[0.41, 0.73, 0.32, 1.0],
[0.22, 0.6, 0.23, 1.0],
[0.93, 0.61, 0.57, 1.0],
[0.93, 0.32, 0.32, 1.0],
[0.75, 0.1, 0.1, 1.0],
[0.99, 0.79, 0.49, 1.0],
[0.95, 0.65, 0.19, 1.0],
[0.82, 0.42, 0.12, 1.0],
[0.82, 0.67, 0.71, 1.0],
[0.6, 0.47, 0.72, 1.0],
[0.5, 0.35, 0.6, 1.0],
[0.9, 0.87, 0.6, 1.0],
[0.5, 0.5, 0.5, 1.0]]}

6.5 anonymizing input data

seniority_list includes several functions which are able to modify worksheet data
within the excel input files, with focus on the master.xlsx and pay_tables.xlsx files.
These operations are helpful when the user wishes to publicly share data or analysis
which could otherwise be considered confidential. For example, these functions can
quickly produce substitute names and employee numbers for all employees. Subse-
quent datasets and chart analysis will reference the modified input data.

Please see the “program demonstration” section within the user guide for more infor-
mation.

6.5. anonymizing input data 167

seniority_list Documentation, Release 0.65

168 Chapter 6. excel input files

CHAPTER

SEVEN

QUICK REPORT

7.1 general

seniority_list is able to rapidly generate statistical summary reports for all integrated
list outcomes. This capability is provided through the functions within the reports
module. Existing datasets are automatically recognized and loaded internally by the
reports module through use of the load_datasets function from the functions module.

This program feature offers insight into significant outcome metrics prior to more de-
tailed analysis using the built-in plotting functions or other techniques. The user may
also find this functionality helpful for testing or validation following list modification
with the editor tool.

Quick reporting trades the extensive customization and analytical resolution offered
with the built-in plotting functions for a fast outline reporting of a limited set of pre-
determined attribute measurements.

Report output is stored within the reports/<case name> folder. The report informa-
tion is presented as two excel spreadsheets and numerous chart images. Summary re-
ports may be shared with others by simply copying and disributing the reports/<case
name> folder.

A more recent addition to the reporting capability of senior_list is time-in-job com-
parisons, discussed in the section below. The file output from the job_diff_to_excel
function is stored within the reports/<case name>/by_employee folder.

169

seniority_list Documentation, Release 0.65

7.1.1 computed statistics

The reports module functions generate a collection of summary data consisting of
average attribute values for each employee group over the life of the data model.

The statistics are computed in two ways:

• values for employees at retirement only

• annual values for all employees

The values are calculated from groupings, or bins, of certain categorical data:

• longevity or date of hire year

• starting job level

• population quantile membership (within each employee group), with two sub-
sets:

– initial list quantile

– monthly running quantile

Within the categorical groupings, the routines measure a default set of attributes:

• seniority list percentage (“spcnt”)

• seniority number (“snum”)

• job value rank (“cat_order”)

• percentage within job level (“jobp”)

• career earnings (“cpay”)

7.1.2 grouping method definitions

• longevity year or date of hire year

Employees may be grouped and compared by the longevity year or date of hire
year (selectable as a function input). Grouping in this fashion permits future year
comparison of employees from each employee group from the same hire year or
with the equivalent longevity year.

• quantile

The default number of quantiles used for membership grouping is 10, meaning
an employee at 5% on the list would be a member of quantile 1, 25% would be
quantile 3, etc. The number of quantiles may be modified through a function
input.

– initial list quantile

170 Chapter 7. quick report

seniority_list Documentation, Release 0.65

Employees are assigned to a quantile group based on separate em-
ployee group seniority list percentage postition at the merger date.
Initial list quantile members are tracked throughout the data model
time period, for each employee group separately. This tracking pro-
vides a comparative attribute value analysis for cohort list percent
employees from each group. Using the initial quantile membership
will allow comparing employees from separate groups in future years
who were initially members of the same relative quantile.

– monthly running quantile

For each month of the data model, employees are assigned to a quan-
tile group based on separate employee group seniority list percentage
postition. Running quantile members are tracked throughout the data
model time period, for each employee group separately. This track-
ing provides a comparative attribute value analysis, averaged on an
annual basis, for cohort list percent employees within each group.
This style of analysis will show, for example, the average job level
held by the 3rd quantile of employees within each group for the year
2022.

• starting job level

Employees are assigned to a initial job level group based on separate employee
group job level postitions at the merger date. Initial list job level members are
tracked throughout the data model time period, for each employee group sepa-
rately. This tracking provides a comparative attribute value analysis for cohort
initial job level employees from each group. Using the initial job level member-
ship will allow comparing employees from separate groups in future years who
were initially members of the same relative job group.

7.1.3 excel files

The stats_to_excel function stores the statistical data in two excel workbooks:

• ret_stats.xlsx

• annual_stats.xlsx

Each workbook contains many worksheets. Each worksheet contains results for a
specific calculated dataset with a certain type of grouping applied.

7.1. general 171

seniority_list Documentation, Release 0.65

Fig. 1: example worksheet from ret_stats workbook50

ret_stats.xlsx workbook

The image below is the same worksheet as the example above, with the
addition of some formatting for descriptive clarity. The yellow header row
contains the measured attributes, and the blue row just below contains em-
ployee group codes. The peach-colored column contains longevity year
information, while the green column holds retirement year data.

This worksheet reveals average retirement attribute values for equivalent
longevity year employees from each employee group. The red-boxed area
shows average attribute values for employees with a 1986 longevity year
retiring in year 2021. In this example, using the columns under the “spcnt”
header, employees from group 2 with a longevity year of 1986 retiring in

50 http://rubydatasystems.com/reports.html#reports.stats_to_excel

172 Chapter 7. quick report

http://rubydatasystems.com/reports.html#reports.stats_to_excel

seniority_list Documentation, Release 0.65

2021 will finish at an average of 39.3% on the integrated list. This compares
to 3.6% and 14% for groups 1 and 3 respectively.

stats at retirement for each employee group tracked by longevity year mem-
bership

annual_stats.xlsx workbook

The example below has also been formatted as described above.

This worksheet reveals average annual attribute values for employees with
the same intial job level at the start of the data model.

In other words, a snapshot of jobs held by all employees is taken at the
very beginning of the data model. Employees within each beginning snap-
shot job level are then tracked throughout the entire data model time period,
with average attribute measurements sampled on an annual basis. The mea-
surements are taken for each employee group separately.

7.1. general 173

seniority_list Documentation, Release 0.65

In the image below, the red-boxed area contains average attribute values for
employees with an initial job level of 6, as measured in year 2022 of the data
model. The boxed data under the “spcnt” header indicated that employees
from group 2 will be positioned at an average of 56% on the integrated list.
This compares to 26.1% and 33% for groups 1 and 3 respectively.

Fig. 2: annual stats tracked by separate employee group initial quantile membership (the red-boxed
area shows average attribute values in 2022 for employees who initially belonged to quantile 6)

7.1.4 chart images

The retirement_charts and annual_charts functions within the reports module create
many simple statistical charts which are stored as image files within auto-generated
folders located within the reports/<case name> folder. The chart images are visual
representations of the computed statistical data.

With the default function inputs, several directories will be created within the case-
specific reports folder:

174 Chapter 7. quick report

seniority_list Documentation, Release 0.65

Fig. 3: folders created with the chart creation functions

The total number of chart images stored within the annual_charts and ret_charts
folders may be relatively large. With the “sample3” example case study, a total of over
2,000 chart images are produced!

Fig. 4: the reports module functions produce numerous charts similar to the chart above

Despite the large quantity, it is does not take long to review the charts using a standard
image viewer and left and right arrow keyboard buttons. The routines that produce the
charts use the same chart background, scales, and labels for all charts within a category

7.1. general 175

seniority_list Documentation, Release 0.65

- only the data lines and the titles change from chart to chart. This setup makes is very
easy to see how measurements change between charts.

7.1.5 time-in-job and career pay differential report

The job_diff_to_excel report function will generate spreadsheet reports indicating dif-
ferences in the number of months employees will spend working within the various
job levels, and the corresponding difference in career compensation. The user may
select any two outcome datasets for comparison.

By default, the generated spreadsheets will be formatted to display employee group
color-coded rows and color-coded font to indicate gains or losses in the various job
level categories. This formatting is very useful for visual interpretation, but does add
time to the process (for reference, the “sample3” example case requires approximately
40 seconds with an i7 linux desktop computer). The formatting may be turned off to
create the files more quickly.

Fig. 5: example job_diff_to_excel module function output - column width and “cpay_diff” number
formatting must be done manually following the creation of the spreadsheet

176 Chapter 7. quick report

seniority_list Documentation, Release 0.65

REPORTS notebook

seniority_list includes an example notebook demonstrating the usage of the reports
module functions. The datasets must be created first before attempting to generate
reports.

7.1. general 177

seniority_list Documentation, Release 0.65

178 Chapter 7. quick report

CHAPTER

EIGHT

EXAMPLE GALLERY

The examples on this page are a subset of what is possible with seniority_list. The
charts below were created using the built-in plotting functions included with the
program. The plotting functions generally accept many different inputs and optional
parameters, offering analysis over a range of attributes for single or mutliple employee
groups. Again, much more is possible than what is seen in the samples below.

The datasets generated by the main program serve as the data source for the charts.
Program inputs may be altered and new datasets quickly recalculated to reflect a dif-
ferent scenario, such as a change in job counts or a different recall schedule. All of the
charts charts below could be redrawn to reflect those changes in a matter of minutes.

The visualization of the data is not limited to the built-in functions. Users with some
coding experience may write customized functions to explore the data in other ways.

These charts are representative of a three-party integration. The program is able to
handle an integration of any number of workgroups.

Note: Chart titles and other references in this gallery are generic. Actual charts in-
clude text linked to inputs. Job category descriptions in this gallery reflect airline pilot
positions. The descriptions are easily customizable to match job descriptions for other
industry case studies.

8.1 screenshots and notes

Most of the following plots have multiple inputs. These inputs allow various groupings
to be studied. The more common groupings include values in a particular month or
months, age or date ranges, employee group (eg) selection(s), quantiles, and job levels.

179

seniority_list Documentation, Release 0.65

Fig. 1: age distribution by group - violin plot51

Fig. 2: percentage distribution by group52

51 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.violinplot_by_eg
52 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.violinplot_by_eg

180 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.violinplot_by_eg
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.violinplot_by_eg

seniority_list Documentation, Release 0.65

Fig. 3: kde distribution53

How are jobs distributed throughout the separate lists? This chart compares native
job distribution to native list percentage. The shaded areas indicate that the job level
distribution within one group is not monotonic (uniformly decreasing) due to a pre-
existing special premium job assignment condition for certain members of one group
and also furloughed employees mixed in with active employees.

53 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.age_kde_dist

8.1. screenshots and notes 181

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.age_kde_dist

seniority_list Documentation, Release 0.65

Fig. 4: standalone jobs by group and list percentage54

An age-percent chart presents a visualization of the distribution of employees by age
and percentage within a proposed integrated list or standalone list(s). Users may plot
data from a particular month, employee group(s), job level, age range, longevity range,
etc.

54 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

182 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 5: age vs. list percentage by group55

Example view of a data for a selected single group displayed for a future month:

55 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

8.1. screenshots and notes 183

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 6: age vs. list percentage, single group, future month56

Due to jobs held at implementation combined with the no bump, no flush provision,
employees actually holding a job within a job level may be dispersed over a wide range
of an integrated list rather than falling within a concise percentile range. Other special
conditions may have a similar effect. An example of this distorted disbursement is
illustrated below. The three groups are holding the same job within the integrated list
yet are located on the list at different levels. After implementation and as the separate
groups mesh, this stratification would lead to different job opportunities within the
same bid category.

56 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

184 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 7: age vs. list percentage, all groups, same job, future month57

Here is an example of an aggregate group measure in the form of average longevity
vs. list percentage for three groups. YLONG stands for the decimal year longevity
attribute. The y axis is years of longevity and the x axis is list percentile.

57 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

8.1. screenshots and notes 185

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 8: longevity (y axis) vs. proposed list percentage (x axis), month 058

The following chart illustrates the average JNUM (job number) indicated with respec-
tive job description labels (y axis) for a proposed list over time. The job description
labels are fully customizable inputs.

58 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

186 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 9: average group job level59

This is the same chart with comparative standalone average job levels added with the
dashed lines.

Fig. 10: average group job level with standalone comparison60

59 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median

8.1. screenshots and notes 187

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median

seniority_list Documentation, Release 0.65

Specific employee numbers may be selected for individual plots. The plots reflect an
average for that percentage level on the list for the respective employee group due to
the fact that the list is organized in a stovepipe fashion.

In the following chart, the display indicates the job level progression for three em-
ployees from three different groups. These employees are next to each other on the
proposed list. The three employees initially hold three different jobs from their orig-
inal lists. The employees which initially hold a higher level job are protected in that
job until his or her new list cohorts “catch up” through the job vacancy process. At
that point, all three track together until retirement.

Fig. 11: percentage within job level indicating no bump no flush effect61

Because a compensation attribute is built into the model, it is possible to study the
change in the flow of money among the workgroups. In the chart below, a normal-
ized compensation comparison is made with standalone figures. The model assumes
the same level of compensation pre- and post- integration. This result could also be
thought of as a job quality change measurement.

60 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median
61 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

188 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.65

Fig. 12: group compensation within an integrated proposal vs. standalone, delayed implementa-
tion62

Several attributes may be loaded into the function which produced the chart above.
Here is another example of the same charting function which compares list seniority
percentage, native vs. proposed ordering.

Fig. 13: employee group list percentage differential: integrated proposal vs. standalone63

Actual attribute value ranges (as opposed to differential values) for each employee
group may be plotted as well. This chart compares the placement of employee groups
within an integrated data model for each year through 2035 (x axis) in terms of list
percentage (y axis, most senior at the top), with implementation of the integrated list
in late 2016. Other dataset attributes may be easily displayed, such as job category
ranking or career pay.

62 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot
63 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot

8.1. screenshots and notes 189

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_diff_boxplot

seniority_list Documentation, Release 0.65

Fig. 14: absolute (actual) group list percentage within an integrated proposal, over time64

The vertical stripplot offers another way to visualize employee group distribution.

Fig. 15: group distribution - stripplot65

64 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_boxplot

190 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_boxplot
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.stripplot_eg_density

seniority_list Documentation, Release 0.65

Here is a stripplot which reveals the job distribution within correctly sized job level
bands, for a month in the future, for a particular proposal.

Fig. 16: group distribution within job level zones, future month, with job level color bands66

This chart shows the distribution of the employee groups within each job level as it
relates to a proposed seniority ordering. The green markers represent a subgroup of
one of the main groups. This subgroup has special job rights which existed prior to
the integration. The program incorporates and accurately models special conditions.

65 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.stripplot_eg_density
66 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.stripplot_distribution_in_category

8.1. screenshots and notes 191

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.stripplot_distribution_in_category

seniority_list Documentation, Release 0.65

Fig. 17: job distribution vs. proposed seniority number67

This is a scatter plot displaying similar information as the chart above, with the added
feature of appropriately colored and correctly scaled job level bands. The 35th month
of the model has been selected for study, which in this case is the first month follow-
ing the implementation of the integrated list. The displayed job bands account for job
count changes over the life of the data model and are correctly sized for the selected
month. Each employee group may be displayed separately and a line chart may be
drawn instead of the scatter plot. There are other chart options as well. In this par-
ticular presentation, the green markers again identify a subset of one of the employee
groups who possess special job assignment rights.

67 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

192 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.65

Fig. 18: group distribution within job level zones vs. list percentage, starting month68

Similar to the above chart, with the x axis changed to reflect age:

68 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

8.1. screenshots and notes 193

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.65

Fig. 19: group distribution within job level zones vs. age, future month69

. . . with the x axis changed to reflect years of longevity (in this case, stovepiped, or
ordered, longevity for each group):

69 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

194 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.65

Fig. 20: group distribution within job level zones vs. longevity, starting month70

Differences between list locations for employees with equivalent attribute values but
from different groups may be studied with the cohort_differential chart. In the fol-
lowing example, the longevity attribute for employee group 1 is being compared to
employees from groups 2 and 3. The code finds the list locations of employees from
groups 2 and 3 which match the longevity values from group 1, then displays the
location differences from the group 1 locations.

70 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

8.1. screenshots and notes 195

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_multiplot_with_cat_order

seniority_list Documentation, Release 0.65

Fig. 21: longevity cohort list location differential (click to enlarge)71

Job levels obtained over time may be visually represented by a step-type chart and/or
by a line representing the percentile within that job level.

Fig. 22: job number and job percentage72

71 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.cohort_differential

196 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.cohort_differential
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.65

The datasets may be filtered and sliced in many ways to examine and compare target
ranges. This is an example of time slicing, focusing on employees hired in 1989. Note
that the underlying data model incorporated a delayed implementation date of late
2016. The employee groups operate independently until then.

Fig. 23: time slice example, standalone data is indicated with the dashed lines73

In this example proposal, a significant loss is indicated for one group while another
group gains. Standalone data is indicated with the dashed lines. Note that the groups
began with nearly identical values at the implementation date. This chart is displaying
a slice of a job rank attribute reflecting employees with a longevity date of 1995 or
earlier.

72 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp
73 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median

8.1. screenshots and notes 197

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median

seniority_list Documentation, Release 0.65

Fig. 24: longevity filter example, standalone data is indicated with the dashed lines74

Here is a chart utilizing the compensation section of the data model. The y axis repre-
sents monthly compensation in thousands of dollars while the x axis indicates percent-
age on the list. In this case, the plots represent results for several individual employees.

Fig. 25: monthly compensation (y axis) vs. list percentage, selected employees75

74 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median

198 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.group_average_and_median
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.65

Parallel coordinates type charts are very good at comparing positional differences,
such as when comparing list percentage or numerical job levels.

For each of the subplots below, standalone list percentage is indicated on the left ver-
tical line. The top row is for month zero, and the second and third rows are for future
months. The other vertical lines represent the list percentage for those same employees
within different proposals. Any number of groups and future months may be plotted
and the left vertical line can be set to represent any of the proposals.

Fig. 26: parallel coordinates, group list percentage, 3 proposals vs. standalone, selectable time
period76

Same as above, with percentage within job level attribute. (May not be the same
proposal as used for chart above)

75 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp
76 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

8.1. screenshots and notes 199

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

seniority_list Documentation, Release 0.65

Fig. 27: parallel coordinates, group job levels, 3 proposals vs. standalone, selectable time period77

List percentage differential over time may be analyzed in another format utilizing dif-
ferential binning, or counting the number of employees within various levels of per-
centage change. The following chart displays the annual differential between proposal
“p1” and standalone data, as it applies to employee group 2.

77 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

200 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.parallel

seniority_list Documentation, Release 0.65

Fig. 28: annual percentage differential bin counts, revealing loss in list percentage up to 50% for
many years78

This type of chart, along with many of the other built-in charts, may easily be set to
display data which has filtered by up to three attributes. The chart below is showing
differential in list percentage at retirement for employees belonging to employee group
2.

78 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins

8.1. screenshots and notes 201

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins

seniority_list Documentation, Release 0.65

Fig. 29: annual percentage differential bin counts, measured at retirement79

This is one chart from a set of charts representing annual retirement data for the em-
ployee groups. The bars indicate percentage of original group count retiring each year
and the job level held at retirement.

Fig. 30: retirement percentage per year including retirement job levels80

79 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins
80 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_grouping_over_time

202 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.percent_diff_bins
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_grouping_over_time

seniority_list Documentation, Release 0.65

Rows of colors charts may also be produced. In the following chart, each color rep-
resents an employee group or furloughees. As with most of the other program charts,
this type of chart may be quickly customized to present various data for any month.

Fig. 31: group distribution, future month - color rows chart81

How are jobs within a job level distributed? This is a rows of colors chart very similar
to the age-percent chart above.

81 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

8.1. screenshots and notes 203

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

seniority_list Documentation, Release 0.65

Fig. 32: single job level distribution by group, future month - color rows chart82

How are all the jobs distributed?

Fig. 33: all job distribution, future month - color rows chart83

82 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color
83 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

204 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

seniority_list Documentation, Release 0.65

Finally, show only the jobs assigned to one employee group.

Fig. 34: job distribution, future month, single employee group - color rows chart84

What is the actual count of jobs held within each job level by each employee group
over time? In the charts below (an excerpt of the output), modeled job counts for
a proposed integration are represented by dashed lines against a baseline (normally
standalone) shown with the solid lines. The total count of jobs within a given job level
is represented with the green lines. This chart type is closely related to the job transfer
type chart described below.

84 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

8.1. screenshots and notes 205

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.rows_of_color

seniority_list Documentation, Release 0.65

Fig. 35: job counts for three job levels (horizontal alignment) for three employee groups (vertical
alignment) - dashed lines are the outcome counts for an integration proposal85

This chart displays the average years spent in the various job levels for an employee
group within a proposal using the basic job level model. The results are grouped by
quantiles. There are eight job levels within the model while using the basic job level
mode in this example. The number of quantiles for the study may be changed easily.

85 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_charts

206 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_charts
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_charts

seniority_list Documentation, Release 0.65

Fig. 36: single group years in position, 8 job levels86

Same as above, except using an enhanced job level model. The process to change
between basic and enhanced job level mode is trivial. The enhanced job level mode
will split the major job levels and allows more detailed job level ranking and ordering.
The colors representing the job categories are fully customizable.

86 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position

8.1. screenshots and notes 207

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position

seniority_list Documentation, Release 0.65

Fig. 37: single group years in position, 16 job levels87

The differences between quantile years in position may be studied as well.

Fig. 38: years in position gain or loss vs. standalone, by quantile, 16 job levels88

87 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position
88 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position

208 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_years_in_position

seniority_list Documentation, Release 0.65

The jobs available to each group will change when operating within an integrated list.
The job transfer charts reveal how they will change over time.

Fig. 39: separate group job count changes over time, integrated vs. standalone, delayed implemen-
tation date, 16 job levels89

89 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

8.1. screenshots and notes 209

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

seniority_list Documentation, Release 0.65

Fig. 40: same as above, with 8 job levels90

Closely related to the above information is an analysis of the change in time spent in
each position per employee. This scatter chart displays months in position differential
between models. Each dot represents a change in the number of months spent in a job
level for those employees who do in fact experience a change. There may be multiple
dots positioned vertically for the same employee, but the monthly gains and losses for
the same employee will always total zero. The differential is indicated with the y axis,
and the x axis represents employee percentile position within an integrated list, most
senior to the right.

90 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

210 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_transfer

seniority_list Documentation, Release 0.65

Fig. 41: time in job differential for job levels 1 through 10, indicating more time spent in lower
level jobs overall (job colors above the line are generally a lower rank than below the line)91

Comparisons between proposals for individual employees are simple to perform. This
is an example of the same employee under standalone and three other proposed in-
tegrated lists. The different paths are affected by no bump, no flush, a pre-existing
special condition, and other prospective conditions.

91 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_time_change

8.1. screenshots and notes 211

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_time_change
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_time_change

seniority_list Documentation, Release 0.65

Fig. 42: career progression with various proposals, single employee, job levels92

Here is another example, this time measuring the different outcomes for another em-
ployee with the cat_order, or global job rank attribute. The outcomes diverge at the
modeled implementation date in late 2016.

Fig. 43: career progression with various proposals, single employee, global job ranking93

92 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.single_emp_compare

212 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.single_emp_compare
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.single_emp_compare

seniority_list Documentation, Release 0.65

The next two charts indicate each employee’s percentage on the list at retirement and
the month in which it will occur, for a given proposal or standalone.

Fig. 44: list percentage at retirement, by group (x axis is month number)94

93 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.single_emp_compare
94 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

8.1. screenshots and notes 213

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 45: list percentage at retirement, single group (2)95

Quantile membership lines and bands may be used to compare population percentage
with attribute levels. The chart below displays the list percentage at retirement for
members of group 2 who have a longevity date of 1999 or earlier with the group 1
proposal. The addition of quantile bands reveals that 50% of that group (right chart
scale) will retire within the top 31% of the proposed integreated seniority list (left chart
scale).

95 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

214 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 46: list percentage at retirement with quantile bands, single group (2)96

Using the same conditions as above shows that group 1 fares much better, with 50%
retiring within the top 5% of the proposed integrated seniority list. The quantile mem-
bership bands are available for any attribute comparison and may be set to correspond
to the entire combined population or only to the displayed group(s).

96 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

8.1. screenshots and notes 215

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 47: list percentage at retirement with quantile bands, single group (1)97

This is a scatter differential chart which can compare several attributes. In this exam-
ple, seniority percentage at retirement vs. proposed list order is represented for three
separate groups.

97 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

216 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.eg_attributes

seniority_list Documentation, Release 0.65

Fig. 48: group list percentage vs. standalone at retirement98

The same chart as above, with a polynomial fit applied. This helps to simplify the
information and may be used with the editing tool.

Fig. 49: polynomial regression applied. . . 99

98 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter

8.1. screenshots and notes 217

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter

seniority_list Documentation, Release 0.65

The two charts above had the x axis scaled to represent the proposal list order. The
chart below organizes each group according to their native list percentage.

Fig. 50: same as above except using separate group native list percentage as x axis100

The next chart is related to the charts above. However, instead of showing results for
each employee at retirement or monthly snapshop data, this chart indicates ranges of
differential results over time. The bands of color within each plot represent the results
for the same employee group under different list orderings and conditions. The chart
below is showing data for group three under proposals one, two, and three.

99 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter
100 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter

218 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.differential_scatter

seniority_list Documentation, Release 0.65

Fig. 51: the colored bands represent different proposals, not different groups (a negative number
indicates a change toward the top or senior levels of the list)101

This type of study can look at other attributes and has an option to plot the mean of the
data. Here is a job level differential chart. Note that as in the chart above, a negative
number indicates an improvement to a higher level job (the best jobs have the lower
job level numbers).

101 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range

8.1. screenshots and notes 219

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range

seniority_list Documentation, Release 0.65

Fig. 52: average job transfer between the employee groups with various proposals102

This is a time-series chart with job level bands and a headcount line. The headcount
line indicates the extent of the remaining affected employees (present at the time of
the merger) each year. The job level bands are responsive to the model fleet change
inputs within the configuration file.

Fig. 53: job level bands over time (this example indicates fleet changes until 2019)103

102 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range

220 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.diff_range
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.65

The next two charts show how seniority list percentage does not always equate to the
same job bidding capability due to no bump, no flush and other conditions. The chart
below includes three employees placed next to each other on an integrated proposal
with an implementation date in late 2016. After that point, the three lines representing
career progression as list percentage are superimposed.

Fig. 54: example career percentage, 3 separate group employees (superimposed, nearly identical
percentage over time)104

This chart reveals a more accurate model of what would occur in terms of jobs avail-
able to these three employees. The thin vertical dashed line represents a modeled
implementation date. Each group operates independently until that time. The black
line represents an employee with a pre-existing special condition, allowing the large
jump in job levels. The blue line represents the employee who holds a higher ranked
job at implementation which is protected until his retirement. Employees holding a
job due to no bump, no flush protection or special job assignment rights remain in that
job until his list partners from other group(s) “catch up”. Once the employees have
reached the point in time where the same bidding opportunities exist for all three, they
then move together in terms of list percentage, if they have not already retired.

The program model accurately accounts for all of these conditions.

103 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands
104 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

8.1. screenshots and notes 221

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.multiline_plot_by_emp

seniority_list Documentation, Release 0.65

Fig. 55: same employees and list as above, career progression through job levels with effects of
special conditions and no bump no flush. y axis is arranged by job order number. . . 105

This type of chart may display selected groups of employees as well. This chart is
showing projection for workers from one of the merging groups who have special job
assignment quotas which pre-exist the merger. Each line represents the modeled career
path for an individual worker.

105 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression

222 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression

seniority_list Documentation, Release 0.65

Fig. 56: a sampling of job progression plots belonging to a subset group with pre-existing job
assignment quotas. Note the vertical lines representing a jump up to a level to satisfy a quota.106

Another built-in chart type available with the seniority_list program is the quantile-
groupby chart. Initial lists from each employee group may be segmented into equal-
sized segments (quantiles) and the metrics associated with the employees belonging
to those segments may be analyzed in various ways over time. This method provides
information concerning the career progression experience of stratified sections of each
employee group over many different metrics. The chart below is displaying the job
category ranking results for an employee group split into 40 quantiles, or 2.5 percent
bands, for a standalone (unmerged) employee group. The data shown here represents
the results for the last employee within each quantile. Other methods, such as quantile
average or median are also available for display.

106 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression

8.1. screenshots and notes 223

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_level_progression

seniority_list Documentation, Release 0.65

Fig. 57: data representing the job category ranking of the last employee within each of 40 quantiles
from the initial employee group population, standalone scenario.107

Here are the results for the same employee group when combined with other employee
groups using a proposed integration list and conditions. The results following the
implementaion date in late 2016 indicate much lower job opportunities and long-term
job level stagnation for this workgroup. This charting function is capable of measuring
other data such as pay, list percentage, and jobs held over the life of the data model.

107 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

224 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.65

Fig. 58: data representing the job category ranking of the last employee within each of 40 quantiles
from the initial employee group population, integrated scenario.108

When analyzing quantile groupings with the job category attribute, it is possible to
show integrated job level zones in the chart background. Here is the same analysis as
above with the addition of job bands.

108 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

8.1. screenshots and notes 225

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.65

Fig. 59: accurately proportioned job levels assist in understanding employee group career progres-
sion.109

The plot line colors may be pulled from a customized matplotlib colormap when plot-
ting a single employee group, which adds further qualitative insight to this type of
analysis. This example clearly reveals an employee group overwhelmingly disadvan-
taged with a proposed integration. While the employees are protected with “no-bump,
no_flush” provisions (cannot normally be displaced from a job held at time of inte-
gration), due to poor placement within an integrated list, this group is relegated to the
bottom sections of each of the job levels for quite some time with greatly diminished
career advancement opportunities.

109 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

226 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.65

Fig. 60: color spectrum line plots offer additional insight concerning the short- and long-term
effects of proposed integrated list scenarios.110

Quantile progression for the same employee group under different integrated list pro-
posals may be directly compared by plotting the output from two different data models
within the same chart. In the following example, the lines represent median job value
ranking for employees grouped into 10 population quantiles. The progression lines
diverge after the implementation date, with the solid lines representing standalone pro-
gression and the dashed lines representing the progression of the same quantile groups
under a selected integration proposal. Clearly the selected proposal would cause major
career stagnation and disruption for the employee group represented here.

110 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

8.1. screenshots and notes 227

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.65

Fig. 61: dataset comparative line plots reveal differences in career progression for the same em-
ployee group under 2 different integrated list scenarios. The up and down trace for quantile group
2 is a result of applying a conditional job assignment rule with the integrated list proposal.111

This chart represents separate group colored job (jnum) bands. The y axis represents
the employee group count. The slight variations in job band thickness are due to
modeled fleet changes. Employee career advancement tracks would all be contained
within these bands, passing upward and to the right as employees age and become
more senior.

111 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

228 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_groupby

seniority_list Documentation, Release 0.65

Fig. 62: separate group job bands pre-integration112

Here are the job bands for the same separate group as in the above chart, as they are
affected when a combined list proprosal is applied. The horizontal section at the left
of the chart reflects a delayed implementation date.

112 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

8.1. screenshots and notes 229

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.65

Fig. 63: separate group job bands post-integration (delayed implementation)113

This is a slightly different format of the same chart above with the addition of a sample
career advancement track. In this scenario, the job bands “move up” almost at exactly
the same pace as the example career track, meaning little to no job advancement for
the sample employee for many years.

Fig. 64: example career advancement through post-integration job bands114

113 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands
114 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

230 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.65

Here is an example of a separate group’s job bands under a proposal which allows
more rapid advancement. (Notice the higher band levels reaching lower with time.)

Fig. 65: separate group post-integration job bands indicating overall improvement with furlough
recall115

The following quantile change charts indicate relative position change only and do
not directly represent potential job positions due to the effect of no bump, no flush
considerations and other special conditions. These conditions are reflected in the “job
band” type charts above. The quantile charts may also be diplayed as percentage band
charts.

To use: compare the underlying quantile and year (square grid) with the resultant
overlying colored grid level as indicated by the legend.

115 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

8.1. screenshots and notes 231

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.job_count_bands

seniority_list Documentation, Release 0.65

Fig. 66: separate group post-integration quantile change over time indicating improvement for
group116

Fig. 67: separate group post-integration quantile change over time indicating large distortion and
loss for group117

116 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
117 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time

232 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time

seniority_list Documentation, Release 0.65

The slight change in the quantiles representation for a standalone group below is due
to a modeled change in the number of jobs available to that standalone group over
time.

Fig. 68: separate group pre-integration quantile change over time - same group as previous
chart. . . before operating within combined list118

8.2 editor tool

The editor is an interactive tool which allows list adjustments to be made and recalcu-
lated results to be viewed within seconds. The display includes a main display chart
and a horizontal stripplot. The main chart may display a comparative attribute differ-
ential between two integration proposals or display absolute (actual) attribute values
for a single integrated list proposal. Attributes such as list percentage, job levels, or
career earnings values may be displayed for any or all employee groups upon reaching
retirement or for any selected month. Comparisons may be made between proposals
or with standalone data. The tool also includes a display filtering feature, allowing fur-
ther analysis of targeted subgroups, such as employees with high longevity or within
a specified job value range.

The editor tool was designed to easily identify outcome equity distortions associated
with various proposals and to permit simple yet precise corrective editing. Distortions

118 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time

8.2. editor tool 233

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.quantile_bands_over_time

seniority_list Documentation, Release 0.65

are identified through intuitive data visualization and corrections are made using the
interactive editor controls and special program algorithms.

To make a corrective edit, the user positions two vertical cursors (lines) on either side
of the target section using the “edit zone” range slider. Then after selecting the appro-
priate employee group, style of adjustment, and direction, a “squeeze” is performed
which has the effect of sliding the target group up or down the proposed list (within
the “edit zone”) while maintaining relative list order within each group. The results of
the move are calculated and displayed for further analysis and adjustment if required.
The stripplot offers a visualization of the density distribution of the groups within the
proposed list order after the squeeze process but before the recalculation. All recalcu-
lations include all of the conditions in the overall model.

The following screenshot of the editor shows it in scatter mode and loaded with a list
percentage at retirement differential chart described earlier.

Fig. 69: Editor tool with interactive sliders and other selectors. . . 119

234 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.65

Fig. 70: Same as above, except utilizing the polynomial fit option.120

119 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor
120 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

8.2. editor tool 235

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.65

Fig. 71: Example of a job level comparison for a future month.121

121 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

236 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.65

Fig. 72: Example of actual (not differential) year longevity attribute for a future month.122

122 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

8.2. editor tool 237

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

seniority_list Documentation, Release 0.65

Fig. 73: Abosolute value filtered display, proposal “p1” cat_order (job value) at retirement for
groups 2 and 3 with a longevity date of 1999 or earlier.123

123 http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

238 Chapter 8. example gallery

http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor
http://rubydatasystems.com/matplotlib_charting.html#matplotlib_charting.editor

CHAPTER

NINE

CONVERTER MODULE

converter.convert(job_dict=None, sg_list=None, count_ratio_dict=None, ra-
tio_dict=None, ratio_onoff_dict=None, count_onoff_dict=None,
dist_sg=None, dist_ratio=None, dist_count_ratio=None)

Convert data relating to job assignment conditions from basic job level inputs to enhanced
job level inputs

Inputs are the basic job level values for the various conditions, the job dictionary, and the
distribution methods used during conversion.

This function is called within the build_program_files script when the “enhanced_job” key
value within the settings dictionary is set to “True”.

inputs

job_dict (dictionary) case_specific jd variable. This input contains full-time job level
conversion percentages

sg_list (list) case-specific sg_rights variable

ratio_list (list) case-specific ratio_cond variable

ratio_dict (dictionary) dictionary containing ratio condition data

count_ratio_dict (dictionary) dictionary containing all data related to a capped ratio
or count ratio condition

dist_sg, dist_ratio, dist_count (string) options are: ‘split’, ‘full’, ‘part’

determines how jobs are distributed to the enhanced job levels.

‘split’ - distribute basic job count to full- and part-time enhanced job levels ac-
cording to the ratios set in the job dictionary (jd) variable

‘full’ - distribute basic job count to corresponding enhanced full-time job levels
only

‘part’ - distribute basic job count to corresponding enhanced part-time job levels
only. This option could be selected if the employees with special job rights are

239

seniority_list Documentation, Release 0.65

placed in a relatively low position on the integrated list, eliminating the option of
obtaining a full-time job position

The distribution type for each condition input is independent of the other condition
distributions.

If these variables are not assigned, the program will default to “split”.

240 Chapter 9. converter module

CHAPTER

TEN

EDITOR_FUNCTION MODULE

bokeh_editor.py

EDITOR TOOL

requires bokeh 0.12.13+ - uses bokeh server

class editor_function.Data(data=None)
Bases: object

update_data(d)

class editor_function.Kwargs(kdict=None)
Bases: object

add(key, value)

clear()

remove(key)

update(other_dict)

class editor_function.PropOrder(list_order=None, name=None)
Bases: object

update_name(new_name)

update_order(new_order)

editor_function.alpha_list()
provides a list of string decimals for editor grid_bg tab alpha selectors

editor_function.color_list()
provides a list of string color names for editor grid_bg tab color selectors

241

seniority_list Documentation, Release 0.65

editor_function.editor(doc, poly_dim=15, ema_len=25, sav-
gol_window=35, savgol_fit=1, animate_speed=350,
plot_width=1100, plot_height=500, strip_eg_height=50,
start_dot_size=4.75, max_dot_size=25,
start_marker_alpha=0.65, marker_edge_color=None,
marker_edge_width=0.0)

create the editor tool

use the following code to run within the notebook:

import editor_function as ef
from functools import partial

from bokeh.io import show, output_notebook
from bokeh.application.handlers import FunctionHandler
from bokeh.application import Application

output_notebook()

handler = FunctionHandler(partial(ef.editor,
optional kwargs,
))

app = Application(handler)
show(app)

inputs

doc (variable) a variable representing the bokeh document, do not modify

poly_dim (integer) the order of the polynomial fit line

ema_len (integer) the smoothing length to use when constructing the exponential
moving average line

savgol_window (positive odd integer) Savitzky-Golay filter window length

savgol_fit (integer) The order of the polynomial used to fit the samples. This value
must be less than the savgol_window value.

animate_speed (integer) Number of milliseconds between each animated month dis-
play

plot_width (integer) width of main and density charts in pixels

plot_height (integer) height of main chart in pixels

strip_eg_height (integer) height alloted for each employee group when constructing
the density chart

start_dot_size (float) initial scatter marker size for main chart

242 Chapter 10. editor_function module

seniority_list Documentation, Release 0.65

max_dot_size (integer) maximum scatter marker size for the main chart display, set
to size sliders

start_marker_alpha (float) initial scatter marker alpha (transparency) for main chart
display

marker_edge_color (color value string or None) color of scatter marker edge color
for main chart when marker edge width value is greater than zero

marker_edge_width (float) width of scatter marker edge width when
marker_edge_color is not None

editor_function.line_widths()
provides a list of string decimals for editor grid_bg tab edit line width selector

editor_function.make_dataset(proposal_name='', df_order=None, condi-
tions=[], ds=None, ds_stand=None)

editor_function.use_first_proposal_found(proposal_name)
find and return the first list order found in ‘dill/proposal_names.pkl’. This function is used
when another proposal name is designated by another section of the program but does not
exist.

inputs

proposal_name (string) the name of the proposal which was not found

243

seniority_list Documentation, Release 0.65

244 Chapter 10. editor_function module

CHAPTER

ELEVEN

FUNCTIONS MODULE

The functions module contains core program routines related to building and working with the data
model and associated files. General definitions: dataset “month_form” is length n months in model
“short_form” data has a length equal to the number of employees “long_form” data is the length
of the cumulative sum non-retired employees for all months in the data model (could be millions
of rows, depending on workgroup size and age)

functions.add_zero_col(arr)
Add a column of zeros as the first column in a 2d array. Output will be a numpy array.

example:

input array:

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])

output array:

array([[0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[0, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[0, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])

inputs

arr (array) 2-dimensional numpy array

functions.age_correction(month_nums_array, ages_array, retage)
Long_Form

Returns a long_form (all months) array of employee ages by incrementing starting ages
according to month number.

245

seniority_list Documentation, Release 0.65

Note: Retirement age increases are handled by the build_program_files script by increment-
ing retirement dates and by the clip_ret_ages function within the make_skeleton script.

inputs

month_nums_array (array) gen_month_skeleton function output (ndarray)

ages_array (array) starting_age function output aligned with long_form (ndarray) i.e.
s_age is starting age (aligned to empkeys) repeated each month.

retage (integer or float) output clip upper limit for retirement age

Output is s_age incremented by a decimal month value according to month_num (this is
candidate for np.put refactored function)

functions.align_fill_down(l, u, long_indexed_df, long_array)
Data align current values to all future months (short array segment aligned to long array)
This function is used to set the values from the last standalone month as the initial data for
integrated dataset computation when a delayed implementation exists.

uses pandas df auto align - relatively slow TODO (for developer) - consider an all numpy
solution

inputs

l, u (integers) current month slice indexes (from long df)

long_indexed_df (dataframe) empty long dataframe with empkey indexes

long_array (array) long array of multiple month data (orig_job, fur_codes, etc)

declare long indexed df outside of function (input). grab current month slice for array inser-
tion (copy). chop long df to begin with current month (copy). assign array to short df. data
align short df to long df (chopped to current month and future). copy chopped df column as
array to long_array return long_array

functions.align_next
“Carry forward” data from one month to the next. Compare indexes (empkeys) from one
month to the next month. When matching index is found, assign corresponding index value
to new result array. Effectively finds the remaining employees (not retired) in the next month
and copies the target column data values for them from current month data into the next
months data.

inputs

this_index_arr (array) current month index of unique employee keys

next_index_arr (array) next month index of unique employee keys (a subset of
this_index_arr)

these_vals_arr (array) the data column segment (attribute) to carry forward

246 Chapter 11. functions module

seniority_list Documentation, Release 0.65

functions.anon_dates(df, date_col_list, max_adj=5, positive_only=True, in-
place=False)

Add (or optionally, add or subtract) a random number of days to each element of a date
attribute column.

inputs

df (dataframe) short-form (master list) pandas dataframe containing a date attribute
column

date_col_list (list) name(s) of date attribute column(s) to be adjusted (as a list of
strings)

Example:

['ldate', 'doh', 'dob']

max_adj (integer) the maximum number of days to add (or optionally subtract) from
each element within the date column

positive_only (boolean) if True limit the range of adjustment days from zero to the
max_adj value. If False, limit the range of adjustment from negative max_adj
value to positive max_adj value.

inplace (boolean) if True, insert the results directly into the date column(s) of the
input dataframe. Caution: make a copy first!

functions.anon_empkeys(df, seq_start=10001, frame_num=10000000, in-
place=False)

Produce a list of unique, randomized employee numbers, catogorized by employee group
number code. Output may be used to anonymize a dataset empkey column.

Dataframe input (df) must contain an employee group (eg) column.

inputs

df (dataframe) short-form (master list) pandas dataframe containing an employee
group code column

seq_start (integer) this number will be added to each employee group cumulative
count to “seed” the random employee numbers. These numbers will be shuffled
within employee groups by the function for the output

frame_num (integer) This number will be multiplied by each employee code and
added to the employee group cumulative counts (added to the seq_start number),
and should be much larger than the data model population to provide a constant
length employee number (empkey) for all employees.

inplace (boolean) if True, insert the results directly into the “empkey” column of the
input dataframe. Caution: make a copy first!

247

seniority_list Documentation, Release 0.65

functions.anon_master(case, empkey=True, name=True, date=False, sam-
ple=False, seq_start=10001, frame_num=10000000,
min_seg=3, max_seg=3, add_rev=False,
date_col_list=['ldate', 'doh'], max_adj=5, pos-
itive_only=True, date_col_list_sec=['dob'],
max_adj_sec=5, positive_only_sec=True, n=None,
frac=None, reset_index=False)

Specialized function to anonymize selected columns from a master.xlsx file and/or select
a subset. All operations are inplace. The original master file is copied and saved as mas-
ter_orig.xlsx.

The default parameters will replace last names and employee keys with substitute values.
Date columns, (doh, ldate, dob) will also be adjusted if the date input is set True and the
proper column names are set as column list inputs.

The function reads the original excel file, copies and saves it, modifies the original file as
directed, and writes the results back to the original file. Subsequent dataset creation runs
will use the modified data. The output master list will be sorted according to the original
master list order.

inputs

case (string) the case study name

empkey (boolean) if True, anonymize the empkey column

name (boolean) if True, anonymize the lname column

date (boolean) if True, anonymize date columns as disignated with the date_col_list
and the date_col_list_sec inputs

sample (boolean) if True, sample the dataframe if the n or frac inputs is/are not None

seq_start (integer) beginning anonymous employee number portion of empkey

frame_num (integer) large frame number which will contain all generated employee
numbers. This number will be adjusted to begin with the appropriate employee
group code

min_seg (integer) minimum number of 2-character segments to include in the gener-
ated substitute last names.

max_seg (integer) maximum number of 2-character segments to include in the gener-
ated substitute last names.

add_rev (boolean) if True, add reversed, non-duplicated 2-character segments to the
pool of strings for name construction. This is normally not necessary and will
construct output strings with multiple consecutive consonants/vowels.

date_col_list (list) list of date value columns to adjust. All columns in this list will be
adjusted in a syncronized fashion, meaning a random day adjustment for each row
will be applied to each row member of all columns.

248 Chapter 11. functions module

seniority_list Documentation, Release 0.65

max_adj (integer) maximum random adjustment deviation, in days, from the original
date(s)

positive_only (boolean) if True, only adjust dates forward in time

date_col_list_sec (list) a secondary list of date column(s) which will be adjusted in-
dependently from the date columns in the date_col_list

max_adj_sec (integer) maximum random adjustment deviation, in days, from the
original date(s) in the date_col_list_sec columns

positive_only_sec (boolean) if True, only adjust dates forward in time (for secondary
cols)

n (integer or None) number of rows to sample if the sample input is True. This input
will override the frac input

frac (float (0.0 - 1.0) or None) decimal fraction (0.0 to 1.0) of the master list to sam-
ple, if the sample input is True and the n input is None

reset_index (boolean) if True, reset the index of the output master list (zero-based
integer index). Do not use this option normally because it will wipe out the empkey
index of the master list.

functions.anon_names(length=10, min_seg=3, max_seg=3, add_rev=False,
df=None, inplace=False)

Generate a list of random strings

Output may be used to anonymize a dataset name column

The length of the output strings will be determined by the min_seg and max_seg inputs. The
segments (seg) are random 2-letter combinations of a consonant and a vowel. An additional
random consonant or vowel will be added to the segment combinations, so the length of the
output strings will always be an odd number. The min and max may be the same value to
produce a list of strings of uniform length.

Example:

If the min_seg input is 1 and the max_seg input is 3, the output list will contain strings from
3 (2-letter seg + 1 random letter) to 7 characters.

inputs

length (integer) the length of the output list

min_seg (integer) the minimum number of 2 letter segments to include in the output
list

max_seg (integer) the maximum number of 2 letter segments to include in the output
list (must be => “min_seg” input)

add_rev (boolean) add vowel-consonant combinations to the consonant-vowel seg-
ments. (this is not normally needed to produce random and readable strings)

249

seniority_list Documentation, Release 0.65

df (dataframe) optional short-form pandas dataframe input. If not None, use the
length of the dataframe as the “length” input value

inplace (boolean) if the “df” input is not None, insert the results directly into the input
“lname” column. Caution: make a copy first!

functions.anon_pay(df, proportional=True, mult=1.0, inplace=False)
Substitute pay table baseline rate information a proportional method or with a non-linear,
non-proportional method.

inputs

df (dataframe) pandas dataframe containing pay rate date (dataframe representation
of the “rates” worksheet from the pay_tables.xlsx workbook)

proportional (boolean) if True, use the mult input to increase or decrease all of the
“rates” worksheet pay data proportionally. If False, use a fixed algorithm to dis-
proportionally adjust the pay rates.

mult (integer or float) if the proportional input is True, multiply all pay rate values
by this input value

inplace (boolean) if True, replace the values within the original dataframe with the
“anonomized” values.

functions.anon_pay_table(case, proportional=True, mult=1.0)
Anonymize the “rates” worksheet of the “pay_tables.xlsx” input file. The rates may be pro-
portionally adjusted (larger or smaller) or disproportionally adjusted with a fixed algorithm.

A copy of the original excel file is copied and saved as “pay_tables_orig.xlsx”.

All modifications are inplace.

inputs

case (string) the case name

proportional (boolean) if True, use the mult input to increase or decrease all of the
“rates” worksheet pay data proportionally. If False, use a fixed algorithm to dis-
proportionally adjust the pay rates.

mult (integer or float) if the proportional input is True, multiply all pay rate values
by this input value

functions.assign_cond_ratio(job, this_job_count, ratio_dict, orig_range, as-
sign_range, eg_range, fur_range, cap=None)

Apply a job ratio assignment condition

The main job assignment function calls this function at the appropriate months.

This function applies a ratio for job assignment between ratio groups. Each ratio group may
contain one or more employee groups. The number of jobs affected may be limited with the
“cap” input.

250 Chapter 11. functions module

seniority_list Documentation, Release 0.65

The ratio for job assignment is set with the inputs on the “ratio_cond” worksheet of the
settings.xlsx input spreadsheet, using the “group” columns and the corresponding “weights”
columns.

Optionally, the ratio of jobs which exists during the “month_start” spreadsheet input may be
captured and used for job assignment during the data model months when the ratio job as-
signment condition is applicable (“month_start” through “month_end”). The existing ratios
are captured and used by setting the “snapshot” input cell to True for the appropriate basic
job row. When using the snapshot option, any weightings designated within the “weights”
columns will be ignored.

There may be a mix of snapshot ratios and ratios set by the “weight” columns for use within
the program. There may also be count-capped ratio assignments and straight ratio assign-
ments within the same data model as long as the effective months and jobs do not overlap,
but there may only be one row of ratio data for a job level within the same input worksheet.

No bump, no flush rules apply when assigning jobs by ratio, meaning only job openings due
to retirements, increases in job counts, or other openings will be assigned according to the
ratio schedule. Employees previously holding a job affected by the ratio condition will not
be displaced to allow an employee from a different ratio group to have that job when the
ratio assignment period begins. Therefore, it may take some time for the desired ratio of job
assignments to be achieved if it differs significantly from the actual ratio(s) when the time
period of conditional job assignment begins.

inputs

job (integer or float) job level number

this_job_count (integer or float) number of jobs available

ratio_dict (dictionary) ratio condition dictionary, constructed with the
build_program_files script and possibly modified by the set_snapshot_weights
function if the “snapshot” option is set to True on the “ratio_cond” worksheet of
the “settings.xlsx” input spreadsheet.

orig_range (1d array) original job range Month slice of the orig_job column array
(normally pertaining a specific month).

assign_range (1d array) job assignment range Month slice of the assign_range col-
umn array

eg_range (1d array) employee group range Month slice of the eg_range column array

fur_range (1d array) furlough range Month slice of the fur_range column array

cap (integer (or whole float)) if a count ratio job assignment is being used, this num-
ber represents the number of jobs affected by the conditional assignment. Avail-
able jobs above this amount are not affected.

functions.assign_job_counts
assign job counts to job count array month slice

251

seniority_list Documentation, Release 0.65

inputs

job_count_range (array) month slice of long job count array

assign_range (array) month slice of long job assignment array

job (integer) job level number

this_job_count (integer) job count alloted for job level

functions.assign_jobs_full_flush_job_changes(nonret_counts,
job_counts,
num_job_levels)

(Long_Form)

Using the nonret counts for each month:

a. determine the long form slice for assignment, and

b. slice the jobs list from the top to create job assignment column

c. create a corresponding furlough column

d. create a job count column

Uses the job_counts (job_gain_loss_table function)[0] to build stovepiped job lists allowing
for job count changes each month and a furlough status column.

Unassigned employees (not enough jobs), are left at job number zero This is the full bump
and full flush version

inputs

nonret_counts (numpy array) array containing the number of non-retired employees
for each month

job_counts (numpy array) array containing the monthly counts of jobs for each job
level

num_job_levels (integer) the number of job levels in the model (excluding furlough
level)

functions.assign_jobs_nbnf_job_changes(df, lower, upper, total_months,
job_reduction_months,
start_month, condition_list,
sdict, tdict, fur_return=False)

(Long_Form)

Uses the job_gain_or_loss_table job count array for job assignments. Jobs counts may
change up or down in any category for any time period. Handles furlough and return of
employees, prior rights/conditions and restrictions and recall of initially furloughed employ-
ees.

252 Chapter 11. functions module

seniority_list Documentation, Release 0.65

Inputs are precalculated outside of function to the extent possible. Returns tuple
(long_assign_column, long_count_column, orig jobs, fur_data)

inputs

df (dataframe) long-form dataframe with [‘eg’, ‘sg’, ‘fur’, ‘orig_job’] columns.

lower (array) ndarry from make_lower_slice_limits function (calculation derived
from cumsum of count_per_month function)

upper (array) cumsum of count_per_month function

total_months (integer or float) sum of count_per_month function output

job_reduction_months (list) months in which the number of jobs is decreased from
the get_job_reduction_months function

start_month (integer) integer representing the month number to begin calculations,
likely month of integration when there exists a delayed integration (from settings
dictionary)

condition_list (list) list of special job assignment conditions to apply, example:
[‘prex’, ‘count’, ‘ratio’]

sdict (dictionary) the program settings dictionary (produced by the
build_program_files script)

tdict (dictionary) job tables dictionary (produced by the build_program_files script)

fur_return (boolean) model employee recall from furlough if True using recall sched-
ule from settings dictionary (allows call to mark_for_recall function)

Assigns jobs so that original standalone jobs are assigned each month (if available) unless a
better job is available through attrition of employees.

Each month loop starts with the lowest job number.

For each month and for each job level:

1. assigns nbnf (orig) job if job array (long_assign_column) element is zero (unas-
signed) and orig job number is less than or equal to the job level in current loop,
then

2. assigns job level in current loop to unassigned slots from top to bottom in the job
array (up to the count of that job level remaining after step one above)

Each month range is determined by slicing using the lower and upper inputs. A comparison
is made each month between the original job numbers and the current job loop number.

Job assignments are placed into the monthly segment (assign_range) of the
long_assign_column.

The long_assign_column eventually becomes the job number (jnum) column in the dataset.

253

seniority_list Documentation, Release 0.65

Original job numbers of 0 indicate no original job and are treated as furloughed employees.
No jobs are assigned to furloughees unless furlough_return option is selected.

functions.assign_standalone_job_changes(eg, df_align, lower,
upper, total_months,
job_counts_each_month,
total_monthly_job_count,
nonret_each_month,
job_change_months,
job_reduction_months,
start_month, sdict, tdict,
apply_sg_cond=True)

(Long_Form)

Uses the job_gain_or_loss_table job count array for job assignments. Jobs counts may
change up or down in any category for any time period. Handles furlough and return of
employees, prior rights/conditions and restrictions and recall of initially furloughed employ-
ees.

Inputs are precalculated outside of function to the extent possible. Returns tuple
(long_assign_column, long_count_column, held_jobs, fur_data, orig_jobs)

inputs

eg (integer) input from an incremental loop which is used to select the proper em-
ployee group recall scedule

df_align (dataframe) dataframe with [‘sg’, ‘fur’] columns

num_of_job_levels (integer) number of job levels in the data model (excluding a fur-
lough level)

lower (1d array) ndarry from make_lower_slice_limits function (calculation derived
from cumsum of count_per_month function)

upper (1d array) cumsum of count_per_month function

total_months (integer or float) sum of count_per_month function output

job_counts_each_month (array) output of job_gain_loss_table function[0] (precal-
culated monthly count of jobs in each job category, size (months,jobs))

total_monthly_job_count (array) output of job_gain_loss_table function[1] (precal-
culated monthly total count of all job categories, size (months))

nonret_each_month (1d array) output of count_per_month function

job_change_months (list) the min start month and max ending month found within
the array of job_counts_each_month inputs (find the range of months to apply
consideration for any job changes - prevents unnecessary looping)

254 Chapter 11. functions module

seniority_list Documentation, Release 0.65

job_reduction_months (list) months in which the number of jobs is decreased (list).
from the get_job_reduction_months function

start_month (integer) starting month for calculations, likely implementation month
from settings dictionary

sdict (dictionary) the program settings dictionary (produced by the
build_program_files script)

tdict (dictionary) job tables dictionary (produced by the build_program_files script)

apply_sg_cond (boolean) compute with pre-existing special job quotas for certain
employees marked with a one in the sg column (special group) according to a
schedule defined in the settings dictionary

Assigns jobs so that original standalone jobs are assigned each month (if available) unless a
better job is available through attrition of employees.

Each month loop starts with the lowest job number.

For each month and for each job level: 1. assigns nbnf (orig) job if job array
(long_assign_column) element is zero (unassigned) and orig job number is less than
or equal to the job level in current loop, then 2. assigns job level in current loop to
unassigned slots from top to bottom in the job array (up to the count of that job level
remaining after step one above)

Each month range is determined by slicing using the lower and upper inputs.

A comparison is made each month between the original job numbers and the current job loop
number.

Job assignments are placed into the monthly segment (assign_range) of the
long_assign_column.

The long_assign_column eventually becomes the job number (jnum) column in the dataset.

Original job numbers of 0 indicate no original job and are treated as furloughed employees -
no jobs are assigned to furloughees unless furlough_return option is selected.

functions.career_months(ret_input, start_date)
(Short_Form)

Determine how many months each employee will work including retirement partial month

“ret_input” (retirement dates) may be in the form of a pandas dataframe, pandas series, array,
list, or string

Output is a numpy array of integers containing the number of months between the start_date
and each date in the ret_input (months from start date to retirement for each employee)

inputs

ret_input (dataframe, series, array, list, or string) retirement dates input

255

seniority_list Documentation, Release 0.65

start_date (string date) comparative date for the retirement dates input, normally the
data model starting date

functions.clear_dill_files()
remove all files from ‘dill’ folder. used when changing case study, avoids possibility of file
from previos calculations being used by new study

functions.clip_ret_ages(ret_age_dict, init_ret_age, dates_long_arr,
ages_long_arr)

Clip employee ages in employee final month to proper retirement age if the model includes
an increasing retirement age over time

inputs

ret_age_dict (dictionary) dictionary of retirement increase date to new retirement age
as defined in settings dictionary

init_ret_age initial retirement age prior to any increase

dates_long_arr (numpy array) array of month dates (long form, same value during
each month)

ages_long_arr (numpy array) array of employee ages (long form)

functions.contract_year_and_raise(df, settings_dict)
(Month_Form)

Generate the contract pay year for indexing into the pay table. Pay year is clipped to last
year of contract.

Also create an annual assumed raise column applicable to the time period beyond the contract
duration. This is a multiplier column with a compounded value each subsequent year. If no
raise is elected (via the settings.xlsx input file, “scalars” worksheet), then this column will
be all ones. The annual raise percentage is designated on the same worksheet. The input df
must be a single column dataframe containing end-of-month dates, one for each month of
the data model.

NOTE: (this function can accept any number of pay exception periods through the
pay_exceptions dictionary, populated by the “pay_exceptions” worksheet values within the
settings.xlsx input file, see the program documentation for more information)

inputs

df (dataframe) a single column dataframe containing end-of-month dates, one for
each month of the data model

settings_dict (dictionary) dictionary of program settings generated by the
build_program_files script

functions.convert_to_datetime(date_data, attribute)
Convert a dataframe column, series, list, or string input into an array of datetimes

inputs

256 Chapter 11. functions module

seniority_list Documentation, Release 0.65

data_data (dataframe, series, array, list, or string) pandas dataframe with a date
column containing string dates or datetime objects, pandas series of dates (strings
or datetime objects), a list/array of date strings or datetime objects, or a single
comma-separated string containing date information.

attribute (string) if the date_data type is a dataframe, the name of the column con-
taining the date information. Otherwise, this input is ignored.

functions.convert_to_enhanced(eg_job_counts, j_changes, job_dict)
Convert employee basic job counts to enhanced job counts (includes full-time and part-time
job level counts) and convert basic job change schedules to enhanced job change schedules.
Returns tuple (enhanced_job_counts, enhanced_job_changes)

inputs

eg_job_counts A list of lists of the basic level job counts for each employee group.
Each nested list has a length equal to the number of basic job levels.

example:

[[197, 470, 1056, 412, 628, 1121, 0, 0],
[80, 85, 443, 163, 96, 464, 54, 66],
[0, 26, 319, 0, 37, 304, 0, 0]]

j_changes input from the settings dictionary describing change of job quantity over
months of time (list)

example:

[1, [35, 64], 87, [80, 7, 0]]

[[job level, [start and end month], total job count change, [eg allotment of change
for standalone calculations]]

job_dict conversion dictionary for an enhanced model. This is the “jd” key value from
the settings dictionary. It uses the basic job levels as the keys, and lists as values
which containin the new full- and part-time job level numbers and the percentage
of basic job counts to be converted to full-time jobs.

example:

{1: [1, 2, 0.6],
2: [3, 5, 0.625],
3: [4, 6, 0.65],
4: [7, 8, 0.6],
5: [9, 12, 0.625],
6: [10, 13, 0.65],
7: [11, 14, 0.65],
8: [15, 16, 0.65]}

257

seniority_list Documentation, Release 0.65

functions.convert_to_hex(rgba_input)
convert float rgba color values to string hex color values rgba = color values expressed as:

red, green, blue, and (optionally) alpha float values rgba_input may be:

1. a single rgba list or tuple

2. a list or tuple containing rgba lists or rgba tuples

3. a dictionary of key: rgba values

output is string hex color values in place of rgba values

Examples:

input single rgba value:

sample_value = (.5, .3, .2)
convert_to_hex(sample_value)
'#7f4c33'

input list:

sample_list = [[0.65, 0.81, 0.89, 1.0],
[0.31, 0.59, 0.77, 1.0],
[0.19, 0.39, 0.70, 1.0],
[0.66, 0.85, 0.55, 1.0]]

convert_to_hex(sample_list)
['#a5cee2', '#4f96c4', '#3063b2', '#a8d88c']

input dict:

sample_dict = {1: (.65, .45, .45, 1.),
2: [.60, .45, .45, 1.],
3: (.55, .45, .45, 1.)}

convert_to_hex(sample_dict)
{1: '#a57272', 2: '#99593a', 3: '#8c7249'}

inputs

rgba_input (tuple, list, or dictionary) input may be a single list or tuple OR a list
of float rgba values as lists or tuples OR a dictionary with values as lists or tu-
ples. Valid string hex values may also be passed as inputs and will be returned
unchanged.

functions.copy_excel_file(case, file, return_path_and_df=False, revert=False,
verbose=True)

Copy an excel file and add ‘_orig’ to the file name, or restore an excel file from the ‘_orig’

258 Chapter 11. functions module

seniority_list Documentation, Release 0.65

copy.

inputs

case (string) the data model case name

file (string) the excel file name without the .xlsx extension

return_path_and_df (boolean) if True, return a tuple containing the file path as a
string and the worksheet designated by the “file” input as a dataframe

revert (boolean) if False, copy the excel file and add ‘_orig’ to the file name. if True,
restore the copied file and drop the ‘_orig’ suffix

verbose (boolean) if True, print a brief summary of the operation result

functions.count_avail_jobs
use numba to loop through the job assignment range and count the number of jobs in a
specified job level previously assigned from the previous month, then subtract result from
the total job level positions count. This result identifies the number of openings available for
the current month.

inputs

assign_range (array) monthly slice of job assignment array

job (integer) job level being tested

this_job_count (integer) total job positions count for the job being tested

functions.count_per_month(career_months_array)
Month_Form

Returns number of employees remaining for each month (not retired). Cumulative sum
of career_months_array input (np array) that are greater or equal to each incremental loop
month number.

Note: alternate method to this function is value count of mnums: df_actives_each_month =
pd.DataFrame(df_idx.mnum.value_counts()) df_actives_each_month.columns = [‘count’]

input

career_months_array output of career_months function. This input is an array con-
taining the number of months each employee will work until retirement.

functions.create_snum_and_spcnt_arrays(jnums, job_level_count,
monthly_population_counts,
monthly_job_counts,
lspcnt_remaining_only)

Calculates: long_form seniority number (‘snum’, only active employees), seniority percent-
age (‘spcnt’, only active employees), list number (‘lnum’, includes furlougees), list percent-
age (‘lspcnt’, includes furloughees).

259

seniority_list Documentation, Release 0.65

Iterate through monthly jobs count data, capturing monthly_job_counts to be used as the
denominator for percentage calculations.

This function produces four ndarrays which will make up four columns in the long_form
pandas dataset.

Returns tuple (long_snum_array, long_spcnt_array, long_list_array, long_lspcnt_array)

inputs

jnums the long_form jnums result

job_level_count number of job levels in model

monthly_population_counts count_per_month function output

monthly_job_counts total of all jobs each month derived from job_gain_loss_table
function (table) >>> np.add.reduce(table, axis=1)

lspcnt_remaining_only calculate list percentage based on employees remaining in
each month including furloughees, otherwise percentage calculation denominator
is the greater of employees remaining (incl fur) or jobs available

functions.cross_val

functions.distribute(available, weights, cap=None)
proportionally distribute ‘available’ according to ‘weights’

usage example:

distribute(334, [2.48, 1])

returns distribution as a list, rounded as integers:

[238, 96]

inputs

available (integer) the count (number) to divide

weights (list) relative weighting to be applied to available count for each section. num-
bers may be of any size, integers or floats. the number of resultant sections is the
same as the number of weights in the list.

cap (integer) limit distribution total to this amount, if less than the “available” input.

functions.eg_quotas(quota, actual, cap=None, this_job_count=None)
determine the job counts to be assigned to each ratio group during a ratio condition job
assignment routine

inputs

quota (list or list-like) the desired job counts for each employee group

260 Chapter 11. functions module

seniority_list Documentation, Release 0.65

actual (list or list-like) the actual job counts for each employee group

cap (integer (or whole float)) if a count ratio routine is being used, this is the total
count of jobs to be affected by the ratio

this_job_count (integer (or whole float)) the monthly count of the applicable job

functions.find_index_val(df1, df2, df2_vals, col1=None, col2=None)
find a value in another dataframe with the same index of another given value in a dataframe.

df1 index, df2 index, and the value columns must contain unique values.

inputs

df1 (dataframe) the first dataframe containing values to index match in another
dataframe

df2 (dataframe) the second dataframe with corresponding index values

df2_vals (list) values to match

functions.find_nearest

functions.gen_month_skeleton
Long_Form

Create an array of month numbers with each month number repeating n times for n non-
retired employees in each month. i.e. the first month section of the array will be all zeros
(month: 0) repeating for the number of non-retired employees. The next section of the array
will be all ones (month: 1) repeating for the number of employees remaining in month 1.
Output is a 1d ndarray.

This funtion creates the first column and the basic form of the skeleton dataframe which is
the basis for the dataset dataframes.

inputs

month_count_array a numpy array containing the number of employees remaining
or not retired for each month. This input is the result of the count_per_month
function.

functions.gen_skel_emp_idx
Long_Form

For each employee who remains for each month, grab that employee index number.

This index will be the key to merging in other data using data alignment. Input is the result
of the count_per_month function (np.array) and the result of the career_months function

inputs

monthly_count_array (numpy array) count of non-retired active employees for
each month in the model, the ouput from the count_per_month function.

261

seniority_list Documentation, Release 0.65

career_mths_array (numpy array) career length in months for each employee, out-
put of career_months functions.

empkey_source_array (numpy array) empkey column data as array

Returns tuple (skel_idx_array, skel_empkey_array)

functions.get_indexes

functions.get_job_change_months(job_changes)
extract a sorted list of only the unique months containing a change in any job count as defined
within the settings dictionary job change schedules

input

job_changes list of job change schedule lists, normally equal to the j_changes variable
from the settings dictionary

functions.get_job_reduction_months(job_changes)
extract a sorted list of only the unique months containing a reduction in any job count as
defined within the settings dictionary job change schedules

input

job_changes list of job change schedule lists, normally equal to the j_changes variable
from the settings dictionary

functions.get_month_slice(df, l, h)
Convenience function to extract data for a particular month. Input is low and high indexes
of target month data (within dataset containing many months)

The input may also be an array (not limited to a dataframe).

inputs

df dataframe (or array) to be sliced

l lower index of slice

h upper index of slice

functions.get_recall_months(list_of_recall_schedules)
extract a sorted list of only the unique months containing a recall as defined within the
settings dictionary recall schedules.

input

list_of_recall_schedules list of recall schedule lists, normally equal to the recalls vari-
able from the settings dictionary

functions.hex_dict()
returns a color name to hex code dictionary (no inputs)

262 Chapter 11. functions module

seniority_list Documentation, Release 0.65

functions.job_gain_loss_table(months, job_levels, init_job_counts,
job_changes, standalone=False)

Make two arrays of job tally information.

The first array has a row for each month in the model, and a column for each job level (ex-
cluding furlough). This array provides a count for each job for each month of the model
accounting for changes provided by the job change schedules defined by the settings dictio-
nary. The second array is a one-dimensional array containing the sum for all jobs for each
month of the model.

inputs

months (integer) number of months in model

job_levels (integer) number of job levels in model (excluding furlough level)

init_job_counts (tuple of two numpy arrays) initial job counts. Output from the
make_jcnts function, essentially an array of the job count lists for each employee
group and an array of the combined counts.

job_changes (list) The list of job changes from the settings dictionary.

standalone (boolean) if True, use the job count lists for the separate employee groups,
otherwise use the combined job count

Returns tuple (job_table, monthly_job_totals)

functions.load_datasets(other_datasets=['standalone', 'skeleton', 'edit', 'hy-
brid'])

Create a dictionary of proposal names to corresponding datasets. The datasets are generated
with the RUN_SCRIPTS notebook. This routine reads the names of the case study proposals
from a pickled dataframe (‘dill/proposal_names.pkl’), created by the build_program_files.py
script. It then looks for the matching stored datasets within the dill folder. The datasets are
loaded into a dictionary, using the proposal names as keys.

The dictionary allows easy reference to datasets from the Jupyter notebook and from within
functions.

input

other_datasets (list) list of datasets to load in addition to those computed from the
proposals (from the case-specific proposals.xlsx Excel file)

functions.longevity_at_startdate(ldate_input, start_date, re-
turn_as_months=False)

(Short_Form)

determine how much longevity (years) each employee has accrued as of the start date

float output is longevity in years (+1 added to reflect current 1-based pay year)

inputs

263

seniority_list Documentation, Release 0.65

ldate_input (dataframe, series, list, or string) list of longevity dates in datetime for-
mat

start_date (string date) comparative date for longevity dates, normally the data
model starting date

return_as_months (boolean) option to return result as month value instead of year
value

functions.make_cat_order(ds, table)
make a long-form “cat_order” (global job ranking) column This function assigns a global
job position value to each employee, considering the modeled job level hierarchy and the
job count within each level. For example, if a case study contains 3 job levels with 100 jobs
in each level, an employee holding a job in the middle of job level 2 would be assigned a
cat_order value of 150.

Category order for standalone employee groups is “normalized” to an integrated scale by ap-
plying standalone job level percentage (relative position within a job level) to the integrated
job level counts. This process allows “apples to apples” comparison between standalone and
integrated job progression.

Standalone cat_order will only reflect job levels available within the standalone scenario.
If the integrated model contains job levels which do not exist within a standalone employee
group model, standalone cat_order results will exclude the respective job level rank segments
and will rank the existing standalone data according to the integrated ranking scale.

The routine creates numpy array lookup tables from integrated job level count data for each
month of the model. The tables are the source for count and additive information which is
used to calculate a rank number within job level and cumulative job count additives.

Month number and job number arrays (from the input ds (dataset)) are used to index into the
numpy lookup arrays, producing the count and additive arrays.

A simple formula is then applied to the percentage, count, and additive arrays to produce the
cat_order array.

inputs

ds (dataframe) a dataset containing [‘jobp’, ‘mnum’, ‘jnum’] columns

table (numpy array) the first output from the job_gain_loss_table function which is
a numpy array with total job counts for each job level for each month of the data
model

functions.make_decile_bands(num_bands=40, num_returned_bands=10)
creates an array of lower and upper percentile values surrounding a consistent schedule of
percentile markers. If the user desires to sample data at every 10th percentile, this function
provides selectiable bottom and top percentile limits surrounding each 10th percentile, or
variable width sample ranges.

num_bands input must be multiple of 5 greater than or equal to 10 and less than 10000.

264 Chapter 11. functions module

seniority_list Documentation, Release 0.65

num_returned_bands input must be multiple of 5, equal to or less than the num_bands input,
and num_bands/num_returned_bands must have no remainder.

Used for selecting sample employees surrounding deciles (0, 10, 20 etc. percent levels).

Top and bottom bands will be half of normal size.

inputs

num_bands Width of bands in percentage is determined by num_bands input. Input
of 40 would mean bands 2.5% wide. (100/40) Top and bottom bands would be
1.25% wide. Ex. 0-1.25%, 8.75-11.25%, . . . 98.75-100%

num_returned_bands number of returned delineated sections. Must be a multiple
of 5 less than or equal to the num_bands value with no remainder when divided
into the num_bands value. (note: an input of 10 would result in 11 actual seg-
ments, one-half band at the top and bottom of list (0% and 100%), and 9 full bands
surrounding each decile, 10% to 90%)

functions.make_delayed_job_counts(imp_month, delayed_jnums, lower, up-
per)

Make an array of job counts to be inserted into the long_form job counts array of the job
assignment function. The main assignment function calls this function prior to the imple-
mentation month. The array output of this function is inserted into what will become the
job count column. These jobs are from the standalone job results. The job count column
displays a total monthly count of the job in the corresponding jnum (job number) column.

inputs

imp_month (integer) implementation month, defined by settings dictionary

delayed_jnums (numpy array) array of job numbers, normally data from the start of
the model through the implementation month

lower (numpy array) array of indexes marking the beginning of data for each month
within a larger array of stacked, multi-month data

upper (numpy array) array of indexes marking the end of data for each month

functions.make_dict_from_columns(df, key_col, value_col)
Make a dictionary from two dataframe columns. One column will be the keys and the other
the values.

Unique key column values will be assigned dictionary values. If the key_col input contains
duplicates, only the last duplicate key-value pair will exist within the returned dictionary.

inputs

df (dataframe) pandas dataframe containing the columns

key_col (string (or possibly integer)) dataframe column which will become dictio-
nary keys

265

seniority_list Documentation, Release 0.65

value_col (string (or possibly integer)) dataframe column which will become dictio-
nary values

functions.make_eg_pcnt_column(df, recalc_each_month=False, mnum=0,
inplace=True, trim_ones=True,
fixed_col_name='eg_start_pcnt', run-
ning_col_name='eg_pcnt')

make an array derived from the input df reflecting one of the following options:

Option A: The percentage of each employee within his/her original employee group for a
selected month. The array values will be data-aligned with the df input index. This
option is useful for tracking percentile cohorts throughout the model.

Option B: The percentage of each employee within his/her original employee group recal-
culated each month. This has the effect of adjusting each group relative percentage for
population changes due to retirements, furlough, etc. This option is useful for monthly
percentile cohort comparisons.

This function either adds a column to the input dataframe or returns an array of values, the
same length as the input dataframe.

Note: This function calculations include any furloughed employees assign to long-form
dataframe (with default month 0 values aligned):

make_eg_pcnt_column(df)

inputs

df (dataframe) pandas dataframe containing an employee group code column (‘eg’)
and a month number column (‘mnum’). The dataframe must be indexed with
employee number code integers (‘empkey’)

recalc_each_month (boolean)

if True: recalculate separate employee group percentage each month of data
model

if False: calculate values for one month only - align those values by employee
number (empkey) to the entire data model

mnum (integer) if recalc_each_month is True, calculate values for this selected month
number

inplace (boolean) if True, add a column to the input dataframe with the calculated
values. If False, return a numpy array of the calculated values.

trim_ones (boolean) if True, replace 100% values (1.0) with a value slightly under 1.0
(.9999). This action assists construction of percentile quantiles for membership
grouping purposes.

266 Chapter 11. functions module

seniority_list Documentation, Release 0.65

exclude_fur (boolean) if True, remove furloughed employees from percentage calcu-
lations

fixed_col_name (string) manually designated name for dataframe column when re-
calc_each_month input is False and inplace input is True.

running_col_name (string) manually designated name for dataframe column when
recalc_each_month input is True and inplace input is True.

functions.make_group_lists(df, column_name)
this function is used with Excel input to convert string objects and integers into Python lists
containing integers. This function is used with the count_ratio_dict dictionary construction.
The function works with one column at a time.

Output is a list of lists which may be reinserted into a column of the dataframe.

example:

A B C D
1 6 0 “2,3”
8 4 5 “5”

make_group_lists(df, ["D"])

[[2, 3], [5]]

This function allows the user to type the string 2,3 into an Excel worksheet cell and have it
interpreted by seniority_list as [2, 3]

inputs

df (dataframe) dataframe containing Excel employee group codes

column_name dataframe column name to convert

functions.make_intgrtd_from_sep_stove_lists(job_lists_arr, eg_arr,
fur_arr, eg_total_jobs,
num_levels,
skip_fur=True)

Month_Form

Compute an integrated job list built from multiple independent eg stovepiped job lists.

This function is for multiple egs (employee groups) - multiple lists in one job_lists_arr.

Creates an ndarray of job numbers.

Function takes independent job number lists and an array of eg codes which represent the eg
ordering in the proposed list.

267

seniority_list Documentation, Release 0.65

Job numbers from the separate lists are added to the result array according to the eg_arr
order. Jobs on each list do not have to be in any sort of order. The routine simply adds items
from the list(s) to the result array slots in list order.

inputs

job_lists_arr array of the input job number arrays. represents the jobs that would be
assigned to each employee in a list form. each list within the array will be the
length of the respective eg.

eg_arr short_form array of eg codes (proposal eg ordering)

fur_arr short_form array of fur codes from proposal

eg_total_jobs list length n egs sums of total jobs available for each eg, form: [n,n,n]

num_levels number of job levels in model (excluding furlough level)

skip_fur (boolean) ignore or skip furloughs when assigning stovepipe jobs. If True,
employees who are originally marked as furloughed are assigned the furlough level
number which is 1 greater than the number of job levels. If False, jobs are assigned
within each employee group in a stovepipe fashion, including those employees
who are marked as furloughed

functions.make_jcnts(job_count_lists)
Make two arrays: 1. array of n lists of job counts for n number of eg job count input lists
2. array of one summation list of first array (total count of all eg jobs) The arrays above will
not contain a furlough count. Returns tuple (eg_job_counts, combined_job_count)

inputs

job_count_lists list of the employee job count list(s). If the program is using the en-
hanced jobs option, this input will be the output of the convert_jcnts_to_enhanced
function. Otherwise, it will be the eg_counts variable from the settings dictionary.

Example return:

(array([
[237, 158, 587, 1373, 352, 739, 495, 330, 784,
1457, 0, 471, 785, 0, 0, 0],
[97, 64, 106, 575, 64, 310, 196, 130, 120,
603, 71, 72, 325, 38, 86, 46],
[0, 0, 33, 414, 20, 223, 0, 0, 46,
395, 0, 28, 213, 0, 0, 0]]),
array(
[334, 222, 726, 2362, 436, 1272, 691, 460, 950,
2455, 71, 571, 1323, 38, 86, 46]))

functions.make_lists_from_columns(df, columns, remove_zero_values=False,
try_integers=False, as_tuples=False)

combine columns row-wise into separate lists, return a list of lists

268 Chapter 11. functions module

seniority_list Documentation, Release 0.65

example:

A B C D
1 6 0 2
8 4 5 3

make_lists_from_columns(df, ["A", "B", "C"])

[[1, 6, 0], [8, 4, 5]]

make_lists_from_columns(df, ["A", "B", "C"],
remove_zero_values=True,
as_tuples=True)

[(1, 6), (8, 4, 5)]

inputs

df (dataframe) pandas dataframe containing columns to combine

columns (list) list of column names

try_integers (boolean) if True, if all column values are numerical, the output will be
converted to integers

remove_zero_values (boolean) if True, remove zero values from list or tuple outputs.
The routine checks for zeros as a zero value or a list with a single zero value

as_tuples (boolean) if True, output will be a list of tuples instead of a list of lists

functions.make_lower_slice_limits(month_counts_cumsum)
for use when working with unique month data within larger array (slice).

The top of slice is cumulative sum, bottom of each slice will be each value of this function
output array. Output is used as input for nbnf functions.

inputs

month_counts_cumsum (numpy array) cumsum of count_per_month function out-
put (employee count each month)

functions.make_original_jobs_from_counts(jobs_arr_arr, eg_array,
fur_array, num_levels)

Short_Form

This function grabs jobs from standalone job count arrays (normally stovepiped) for each
employee group and inserts those jobs into a proposed integrated list, or a standalone list.
Each eg (employee group) is assigned jobs from their standalone list in order top to bottom.

269

seniority_list Documentation, Release 0.65

Result is a combined list of jobs with each eg maintaining ordered independent stovepipe
jobs within the combined list of jobs jobs_arr_arr is an array of arrays, likely output[0] from
make_array_of_job_lists function.

Order of job count arrays within jobs_arr_arr input must match emp group codes order (1,
2, 3, etc.).

If total group counts of job(s) is less than slots available to that group, remaining slots will
be assigned (remain) a zero job number (0).

eg_array is list (order sequence) of employee group codes from proposed list with length
equal to length of proposed list.

Result of this function is ultimately merged into long form for no bump no flush routine.

employees who are originally marked as furloughed are assigned the furlough level number
which is 1 greater than the number of job levels.

inputs

jobs_arr_arr (numpy array of arrays) lists of job counts for each job level within
each employee group, each list in order starting with job level one.

eg_array (numpy array) employee group (eg) column data from master list source

fur_array furlough (fur) column data from master list source

num_levels number of job levels (without furlough level) in the model

functions.make_preimp_array(ds_stand, ds_integrated, imp_high, compute_cat,
compute_pay)

Create an ordered numpy array of pre-implementation data gathered from the pre-calculated
standalone dataset and a dictionary to keep track of the information. This data will be joined
with post_implementation integrated data and then copied into the appropriate columns of
the final integrated dataset.

inputs

ds_stand (dataframe) standalone dataset

ds_integrated (dataframe) dataset ordered for proposal

imp_high highest index (row number) from implementation month data (from long-
form dataset)

compute_cat (boolean) if True, compute and append a job category order column

compute_pay (boolean) if True, compute and append a monthly pay column and a
career pay column

functions.make_starting_val_column(df, attr, inplace=True)
make an array of values derived from the input dataframe which will reflect the starting
value (month zero) of a selected attribute. Each employee will be assigned the zero-month
attribute value specific to that employee, duplicated in each month of the data model.

270 Chapter 11. functions module

seniority_list Documentation, Release 0.65

This column allows future attribute analysis with a constant starting point for all employees.
For example, retirement job position may be compared to initial list percentage.

assign to long-form dataframe:

df['start_attr'] = make_starting_val_column(df, attr)

input

df (dataframe) pandas dataframe containing the attr input column and a month num-
ber coulumn. The dataframe must be indexed with employee number code integers
(‘empkey’)

attr (column name in df) selected zero-month attribute (column) from which to as-
sign values to the remaining data model months

functions.make_stovepipe_jobs_from_jobs_arr(jobs_arr, to-
tal_emp_count=0)

Month_Form

Compute a stovepipe job list derived from the total count of jobs in each job level.

This function is for one eg (employee group) and one jobs_arr (list).

Creates an array of job numbers from a job count list (converted to np.array).

Result is an array with each job number repeated n times for n job count. - job count list like
: job_counts = [334, 222, 701, 2364] - jobs_array = np.array(job_counts)

inputs

jobs_arr (numpy array) job counts starting with job level 1

total_emp_count if zero (normal input), sum of jobs_arr elements, otherwise user-
defined size of result_jobs_arr

functions.make_stovepipe_prex_shortform(job_list, sg_codes, sg_rights,
fur_codes)

Short_Form

Creates a ‘stovepipe’ job assignment within a single eg including a special job assignment
condition for a subgroup. The subgroup is identified with a 1 in the sg_codes array input,
originating with the sg column in the master list.

This function applies a pre-existing (prior to the merger) contractual job condition, which is
likely the result of a previous seniority integration.

The subset group will have proirity assignment for the first n jobs in the affected job category,
the remainding jobs are assigned in seniority order.

The subgroup jobs are assigned in subgroup stovepipe order. This function is applicable
to a condition with known job counts. The result of this function is used with standalone

271

seniority_list Documentation, Release 0.65

calculations or combined with other eg lists to form an integrated original job assignment
list.

inputs

job_list list of job counts for eg, like [23,34,0,54,. . .]

sg_codes ndarray eg group members entitled to job condition (marked with 1, others
marked 0) length of this eg population

sg_rights list of lists (from settings dictionary) including job numbers and job counts
for condition. Columns 2 and 3 are extracted for use.

fur_codes array of ones and zeros, one indicates furlough status

functions.make_tuples_from_columns(df, col_list, return_as_list=True,
date_cols=[], re-
turn_dates_as_strings=False,
date_format='%Y-%m-%d')

Combine row values from selected columns to form tuples. Returns a list of tuples which
may be assigned to a new column. The length of the list is equal to the length of the input
dataframe. Date columns may be first converted to strings before adding to output tuples if
desired.

inputs

df (dataframe) input dataframe

col_list (list) columns from which to create tuples

return_as_list (boolean) if True, return a list of tuples

date_cols (list) list of columns to treat as dates

return_dates_as_strings (boolean) if True, for columns within the data_cols input,
convert date values to string format

date_format (string) string format of converted date columns

functions.mark_for_furlough(orig_range, fur_range, month, jobs_avail,
num_of_job_levels)

Assign fur code to employees when count of jobs is less than count of active employees in
inverse seniority order and assign furloughed job level number. note: normally only called
during a job change month though it will do no harm if called in other months

inputs

orig_range current month slice of jobs held

fur_range current month slice of fur data

month current month (loop) number

272 Chapter 11. functions module

seniority_list Documentation, Release 0.65

jobs_avail total number of jobs for each month array, job_gain_loss_table function
output [1]

num_of_job_levels from settings dictionary, used to mark fur job level as
num_of_job_levels + 1

functions.mark_for_recall(orig_range, num_of_job_levels, fur_range, month,
recall_sched, jobs_avail, standalone=True,
eg_index=0, method='sen_order', stride=2)

change fur code to non-fur code for returning employees according to selected method (se-
niority order, every nth furloughee, or random) note: function assumes it is only being called
during a recall month

inputs

orig_range original job range

num_of_job_levels number of job levels in model, normally from settings dictionary

fur_range current month slice of fur data

month current month (loop) number

recall sched list(s) of recall schedule (recall amount/month, recall start month, recall
end month)

jobs_avail total number of jobs for each month array, job_gain_loss_table function
output [1]

standalone (boolean) This function may be used with both standalone and integrated
dataset generation. Set this variable to True for use within standalone dataset cal-
culation, False for integrated dataset calculation routine.

eg_index (integer) selects the proper recall schedule for standalone dataset genera-
tion, normally from a loop increment. The recall schedule is defined in the set-
tings dictionary. set to zero for an integrated routine (integrated routine uses a
global recall schedule)

method means of selecting employees to be recalled default is by seniority order, most
senior recalled first other options are:

stride: i.e. every other nth employee. (note: could be multiple strides per month
if multiple recall lists are designated).

random: use shuffled list of furloughees

stride set stride if stride option for recall selected. default is 2.

functions.mark_fur_range
apply fur code to current month fur_range based on job assignment status

inputs

273

seniority_list Documentation, Release 0.65

assign_range current month assignment range (array of job numbers, 0 indicates no
job)

fur_range current month fur status (1 means furloughed, 0 means not furloughed)

job_levels number of job levels in model (from settings dictionary)

functions.max_of_nested_lists(nested_list, return_min=False)
Find the maximum value within a list of lists (or tuples or arrays). The function may option-
ally return the minimum value within nested containers.

inputs

nested_list (list, tuple, or array) nested container input

return_min (boolean) if True, return minimum of nested_list input (vs. max)

functions.monotonic(sequence)
test for stricly increasing array-like input May be used to determine when need for no bump,
no flush routine is no longer required. If test is true, and there are no job changes, special
rights, or furlough recalls, then a straight stovepipe job assignment routine may be imple-
mented (fast).

inputs

sequence array-like input (list or numpy array ok)

functions.print_settings()
grab settings dictionary data settings and put it in a dataframe and then print it for a quick
summary of scalar settings dictionary inputs

functions.remove_zero_groups(ratio_dict)
remove data related to a “dummy” group represented by a zero

example:

{2: [([2], [0], [1]), [0, 2, 6], 34, 120]}

becomes:

{2: [([2], [1]), [0, 6], 34, 120]}

inputs

ratio_dict (dictionary) the ratio dictionary produced by the build_program_files
script originating from the “ratio_cond” worksheet of the settings.xlsx input file

functions.sample_dataframe(df, n=None, frac=None, reset_index=False)
Get a random sample of a dataframe by rows, with the number of rows in the returned sample
defined by a count or fraction input.

inputs

274 Chapter 11. functions module

seniority_list Documentation, Release 0.65

df (dataframe) pandas dataframe for sampling

n (integer) If not None, the count of the rows in the returned sample dataframe. The
“n” input will override the “frac” input if both are not None. Will be clipped
between zero and len(df) if input exceeds these boundries.

frac (float) If not None, the size of the returned sample dataframe relative to the input
dataframe. Will be ignored if “n” input is not None. Will be clipped between 0.0
and 1.0 if input exceeds these boundries. An input of .3 would randomly select
30% of the rows from the input dataframe.

reset_index (boolean) If True, reset the output dataframe index

If both the “n” and “frac” inputs are None, a random single row will be returned.

The rows in the output dataframe will be sorted according to original order.

functions.save_and_load_dill_folder(save_as=None, load_case=None,
print_saved=False)

Save the current “dill” folder to the “saved_dill_folders” folder, or load a saved dill folder as
the “dill” folder if it exists.

This function allows calculated case study pickle files (including the calculated datasets) to
be saved to or loaded loaded from a “saved_dill_folders” folder.

The “saved_dill_folders” folder is created if it does not already exist. The load_case input
is a case study name. If the load_case input is set to None, the function will only save the
current dill folder and do nothing else. If a load_case input is given, but is incorrect or no
matching folder exists, the function will only save the current dill folder and do nothing else.

The user may print a list of available saved dill folders (for loading) by setting the print_saved
input to True. No other action will take place when this option is set to True.

If an award has conditions which differ from proposed conditions, the settings dictionary
must be modified and the dataset rebuilt.

This function allows previously calculated datasets to be quickly retrieved and eliminates
continual adjustment of the settings spreadsheet if the user switches between case studies
(assuming the award has been determined and no more input adjustment will be made).

inputs

save_as (string) A user-specified folder prefix. If None, the current “dill” folder will
be saved using the current case study name as a prefix. If set to a string value, the
current dill folder will be saved with the “save_as” string value prefix.

Example with the save_as variable set to “test1”. The existing dill folder would be
saved as:

saved_dill_folders/test1_dill_folder

275

seniority_list Documentation, Release 0.65

load_case (string) The name of a case study. If None, the only action performed
will be to save the current “dill” folder to the “saved_dill_folders” folder. If the
load_case variable is a valid case study name and a saved dill folder for that case
study exists, the saved dill folder will become the current dill folder (contents of the
saved dill folder will be copied into the current dill folder). This action will occur
after the contents of the current dill folder are copied into the “saved_dill_folders”
folder.

print_saved (boolean) option to print the saved folder prefixes only. This provides a
quick check of the folders available to be loaded. No other action will take place
with this option set to True.

functions.set_snapshot_weights(job, ratio_dict, orig_rng, eg_range)
Determine the job distribution ratios to carry forward during the ratio condition application
period using actual jobs held ratios. likely called at implementation month by main job
assignment function Count the number of jobs held by each of the ratio groups for each of
the affected job level numbers. Set the weightings in the distribute function accordingly.

inputs

ratio_dict (dictionary) dictionary containing job levels as keys and ratio groups,
weightings, month_start and month end as values.

orig_rng (numpy array) month slice of original job array

eg_range (numpy array) month slice of employee group code array

functions.squeeze_increment(data, eg, low_num, high_num, increment)
Move members of a selected eg (employee group) within a list according to an increment
input (positive or negative) while retaining relative ordering within all eg groups.

inputs

data (dataframe) dataframe with empkey as index which at minimum includes an
order column and an eg column

eg (integer) employee group number code

low_num and high_num indexes for the beginning and end of the list zone to be re-
ordered

increment (integer) the amount to add or subrtract from the appropriate eg order num-
ber increment can be positive (move down list) or negative (move up list - toward
zero)

Selected eg order numbers within the selected zone (as a numpy array) are incremented -
then the entire group order numbers are reset within the zone using scipy.stats.rankdata.

The array is then assigned to a dataframe with empkeys as index.

functions.squeeze_logrithmic(data, eg, low_value, high_value,
log_factor=1.5, put_segment=1, direction='d')

276 Chapter 11. functions module

seniority_list Documentation, Release 0.65

perform a log squeeze (logrithmic-based movement of one eg (employee group), determine
the closest matching indexes within the rng to fit the squeeze, put the affected group in those
indexes, then fill in the remaining slots with the other group(s), maintaining orig ordering
within each group at all times

inputs

data (dataframe) a dataframe indexed by empkey with at least 2 columns: employee
group (eg) and order (order)

eg (employee code integer) the employee group to move

low_val and high_val (integers) integers marking the boundries (rng) for the opera-
tion (H must be greater than L)

log_factor (float) determines the degree of ‘logrithmic packing’

put_segment (float) allows compression of the squeeze result (values under 1)

direction (string) squeeze direction: “u” - move up the list (more senior) “d” - move
down the list (more junior)

functions.starting_age(dob_input, start_date)
Short_Form

Returns decimal age at given date.

“dob_input” (birth dates) may be in the form of a pandas dataframe, pandas series, list, or
string

inputs

dob_list (dataframe, series, list, or string) birth dates input

start_date comparative date for the birth dates, normally the data model starting date

functions.update_excel(case, file, ws_dict={}, sheets_to_remove=None)
Read an excel file, optionally remove worksheet(s), add worksheets or overwrite worksheets
with a dictionary of ws_name, dataframe key, value pairs, and write the excel file back to
disk

inputs

case (string) the data model case name

file (string) the excel file name without the .xlsx extension

ws_dict (dictionary) dictionary of worksheet names as keys and pandas dataframes as
values. The items in this dictionary will be passed into the excel file as worksheets.
The worksheet name keys may be the same as some or all of the worksheet names
in the excel file. In the case of matching names, the data from the input dict
will overwrite the existing data (worksheet) in the excel file. Non-overlapping
worksheet names/dataframe values will be added as new worksheets.

277

seniority_list Documentation, Release 0.65

sheets_to_remove (list) a list of worksheet names (strings) representing worksheets
to remove from the excel workbook. It is not necessary to remove sheets which
are being replaced by worksheet with the same name.

278 Chapter 11. functions module

CHAPTER

TWELVE

INTERACTIVE_PLOTTING MODULE

interactive_plotting.bk_basic_interactive(doc, df=None,
plot_height=700,
plot_width=900,
dot_size=5)

run a basic interactive chart as a server app - powered by the bokeh plotting library. Run the
app in the jupyter notebook as follows:

from functools import partial
import pandas as pd

import interactive_plotting as ip

from bokeh.io import show, output_notebook

from bokeh.application.handlers import FunctionHandler
from bokeh.application import Application

output_notebook()

proposal = 'p1'
df = pd.read_pickle('dill/ds_' + proposal + '.pkl')

handler = FunctionHandler(partial(ip.bk_basic_interactive, df=df))

app = Application(handler)
show(app)

inputs

doc (required input) do not change this input

df (dataframe) calculated dataset input, this is a required input

plot_height (integer) height of plot in pixels

plot_width (integer) width of plot in pixels

279

seniority_list Documentation, Release 0.65

Add plot_height and/or plot_width parameters as kwargs within the partial method:

handler = FunctionHandler(partial(ip.bk_basic_interactive,
df=df,
plot_height=450,
plot_width=625))

Note: the “df” argument is not optional, a valid dataset variable must be assigned.

280 Chapter 12. interactive_plotting module

CHAPTER

THIRTEEN

LIST_BUILDER MODULE

list_builder.build_list(df, measure_list, weight_list, show_weightings=False,
hide_rank_cols=True, return_df=False)

Construct a “hybrid” list ordering.

Note: first run the “prepare_master_list” function and use the output for the “df” input here.

Combine and sort various attributes according to variable multipliers to produce a list order.
The list order output is based on a sliding scale of the priority assigned amoung the attributes.

The default output is a dataframe containing the new hybrid list order and employee numbers
(empkey) only, and is written to disk as ‘dill/p_hybrid.pkl’.

The entire hybrid-sorted dataframe may be returned by setting the “return_df” input to True.
This does not affect the hybrid list order dataframe - it is produced and stored regardless of
the “return_df” option.

inputs

df the prepared dataframe output of the prepare_master_list function

measure_list a list of attributes that form the basis of the final sorted list. The em-
ployee groups will be combined, sorted, and numbered according to these at-
tributes one by one. Each time the current attribute numbered list is formed, a
weighting is applied to that order column. The final result number will be the rank
of the cummulative total of the weighted attribute columns.

weight_list a list of decimal weightings to apply to each corresponding measure within
the measure_list. Normally the total of the weight_list should be 1, but any num-
bers may be used as weightings since the final result is a ranking of a cumulative
total.

show_weightings add columns to display the product of the weight/column mutiplca-
tion

return_df option to return the new sorted hybrid dataframe as output. Normally, the
function produces a list ordering file which is written to disk and used as an input
by the compute measures script.

281

seniority_list Documentation, Release 0.65

hide_rank_cols remove the attrubute rank columns from the dataframe unless visual
review is desired

list_builder.compare_dataframes(base, compare, return_orphans=True, ig-
nore_case=True, print_info=False, con-
vert_np_timestamps=True)

Compare all common index and common column DataFrame values and report if any value
is not equal in a returned dataframe.

Values are compared only by index and column label, not order. Therefore, the only values
compared are within common index rows and common columns. The routine will report the
common columns and any unique index rows when the print_info option is selected (True).

Inputs are pandas dataframes and/or pandas series.

This function works well when comparing initial data lists, such as those which may be
received from opposing parties.

If return_orphans, returns tuple (diffs, base_loners, compare_loners), else returns diffs. diffs
is a differential dataframe.

inputs

base baseline dataframe or series

compare dataframe or series to compare against the baseline (base)

return_orphans separately calculate and return the rows which are unique to base and
compare

ignore_case convert the column labels and column data to be compared to lowercase
- this will avoid differences detected based on string case

print_info option to print out to console verbose statistical information and the
dataframe(s) instead of returning dataframe(s)

convert_np_timestamps numpy returns datetime64 objects when the source is a date-
time date-only object. this option will convert back to a date-only object for com-
parison.

list_builder.find_index_locs(df, index_values)
Find the pandas dataframe index location of an array-like input of index labels.

Returns a list containing the index location(s).

inputs

df dataframe - the index_values input is a subset of the dataframe index.

index_values array-like collection of values which are a subset of the dataframe index

list_builder.find_row_orphans(base_df, compare_df, col, ignore_case=True,
print_output=False)

Given two columns (series) with the same column label in separate pandas dataframes, return

282 Chapter 13. list_builder module

seniority_list Documentation, Release 0.65

values which are unique to one or the other column, not common to both series. Will also
work with dataframe indexes.

Returns tuple (base_loners, compare_loners) if not print_output. These are dataframes with
the series orphans.

Note: If there are orphans found that have identical values, they will both be reported. How-
ever, currently the routine will only find the first corresponding index location found and
report that location for both orphans.

inputs

base_df first dataframe to compare

compare_df second dataframe to compare

col column label of the series to compare. routine will compare the dataframe indexes
with the input of ‘index’.

ignore_case convert col to lowercase prior to comparison

print_output print results instead of returning results

list_builder.find_series_locs(df, series_values, column_label)
Find the pandas dataframe index location of an array-like input of series values.

Returns a list containing the index location(s).

inputs

df dataframe - the series_values input is a subset of one of the dataframe columns.

series_values array-like collection of values which are a subset of one of the dataframe
columns (the column_lable input)

column_label the series within the pandas dataframe containing the series_values

list_builder.names_to_integers(names, leading_precision=5, normal-
ize_alpha=True)

convert a list or series of string names (i.e. last names) into integers for numerical sorting

Returns tuple (int_names, int_range, name_percentages)

inputs

names List or pandas series containing strings for conversion to integers

leading_precision Number of characters to use with full numeric precision, remainder
of characters will be assigned a rounded single digit between 0 and 9

normalize_alpha If True, insert ‘aaaaaaaaaa’ and ‘zzzzzzzzzz’ as bottom and top
names. Otherwise, bottom and top names will be calculated from within the names
input

output

283

seniority_list Documentation, Release 0.65

1. an array of the name integers

2. the range of the name integers,

3. an array of corresponding percentages for each name integer relative to the range of
name integers array

Note: This function demonstrates the possibility of constructing a list using any type or
combination of attributes.

list_builder.prepare_master_list(name_int_demo=False, pre_sort=True)
Add attribute columns to a master list. One or more of these columns will be used by the
build_list function to construct a “hybrid” list ordering.

Employee groups must be listed in seniority order in relation to employees from the same
group. Order between groups is uninmportant at this step.

New columns added: [‘age’, ‘s_lmonths’, ‘jnum’, ‘job_count’, ‘rank_in_job’, ‘jobp’,
‘eg_number’, ‘eg_spcnt’]

inputs

name_int_demo if True, lname strings are converted to an integer then a correspond-
ing alpha-numeric percentage for constructing lists by last name. This is a demo
only to show that any attribute may be used as a list weighting factor.

pre_sort sort the master data dataframe doh and ldate columns prior to beginning any
calculations. This sort has no effect on the other columns. The s_lmonths coulumn
will be calculated on the sorted ldate data.

Job-related attributes are referenced to job counts from the settings dictionary.

list_builder.sort_and_rank(df, col, tiebreaker1=None, tiebreaker2=None, re-
verse=False)

Sort a datframe by a specified attribute and insert a column indicating the resultant ranking.
Tiebreaker inputs select columns to be used for secondary ordering in the event of value ties.
Reverse ordering may be selected as an option.

inputs

df input dataframe

col (string) dataframe column to sort

tiebreaker1, tiebreaker2 (string(s)) second and third sort columns to break ties with
primary col sort

reverse (boolean) If True, reverses sort (descending values)

list_builder.sort_eg_attributes(df, attributes=['doh', 'ldate'], re-
verse_list=[0, 0], add_columns=False)

Sort master list attribute columns by employee group in preparation for list construction.
The overall master list structure and order is unaffected, only the selected attribute columns
are sorted (normally date-related columns such as doh or ldate)

284 Chapter 13. list_builder module

seniority_list Documentation, Release 0.65

inputs

df The master data dataframe (does not need to be sorted)

attributes columns to sort by eg (inplace)

reverse_list If an attribute is to be sorted in reverse order (descending), use a ‘1’ in
the list position corresponding to the position of the attribute within the attributes
input

add_columns If True, an additional column for each sorted attribute will be added to
the resultant dataframe, with the suffix ‘_sort’ added to it.

list_builder.test_df_col_or_idx_equivalence(df1, df2, col=None)
check whether two dataframes contain the same elements (but not necessarily in the same
order) in either the indexes or a selected column

inputs

df1, df2 the dataframes to check

col if not None, test this dataframe column for equivalency, otherwise test the
dataframe indexes

Returns True or False

285

seniority_list Documentation, Release 0.65

286 Chapter 13. list_builder module

CHAPTER

FOURTEEN

MATPLOTLIB_CHARTING MODULE

matplotlib_charting.add_pad(list_in, pad=100)
Separate all elements in a monotonic list by a minimum pad value.

Used by plotting functions to prevent overlapping tick labels.

inputs

list_in (list) a monotonic list of numbers

pad (integer) the minimum separation required between list elements

If the function is unable to produce a list with the pad between all elements (excluding the
last list spacing), the original list is returned. The function will permit the final list padding
(between the last two elements) to be less than the pad value.

matplotlib_charting.age_kde_dist(df, color_list, p_dict, max_age,
ds_dict=None, mnum=0, title_size=14,
min_age=25, chart_style='darkgrid',
xsize=12, ysize=10, image_dir=None,
image_format='png')

From the seaborn website: Fit and plot a univariate or bivariate kernel density estimate.

inputs

df (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

color_list (list) list of colors for employee group plots

p_dict (dictionary) eg to string dict for plot labels

max_age (float) maximum age to plot (x axis limit)

ds_dict (dictionary) output from load_datasets function

mnum (integer) month number to analyze

title_size (integer or float) text size of chart title

287

seniority_list Documentation, Release 0.65

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.age_vs_spcnt(df, eg_list, mnum, color_list,
p_dict, ret_age, ds_dict=None,
attr1=None, oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0,
chart_style='darkgrid', size=20, al-
pha=0.8, suptitle_size=14, title_size=12,
legend_size=12, xsize=10, ysize=8,
image_dir=None, image_format='png')

scatter plot with age on x axis and list percentage on y axis. note: input df may be prefiltered
to plot focus attributes, i.e. filter to include only employees at a certain job level, hired
between certain dates, with a particular age range, etc.

inputs

df (string or dataframe) text name of input proposal dataset, also will accept any
dataframe variable (if a sliced dataframe subset is desired, for example) Example:
input can be ‘proposal1’ (if that proposal exists, of course, or could be df[df.age >
50])

eg_list (list) list of employee groups to include example: [1, 2]

mnum (int) month number to study from dataset

color_list (list) color codes for plotting each employee group

p_dict (dict) dictionary, numerical eg code to string description

ret_age (integer or float) chart xaxis limit for plotting

ds_dict (dict) variable assigned to the output of the load_datasets function, reqired
when string dictionary key is used as df input

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

chart_style (string) any valid seaborn plotting style

size (integer) size of scatter points

288 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

alpha (float) scatter point alpha (0.0 to 1.0)

suptitle_size (integer or font) text size of chart super title

title_size (integer or float) text size of chart title

legend_size (integer or float) text size of chart legend

xsize, ysize (integer or float) plot size in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.build_subplotting_order(rows, cols)
build a list of integers to permit passing through subplots by columns note: only used when
looping completes one vertical column before continuing to next column

inputs

rows, cols (integer) number of rows and columns in multiple chart output

matplotlib_charting.cohort_differential(ds, base, sdict, cdict,
adict, measure='ldate',
compare_value='2010-12-31',
mnum=None, ds_dict=None,
single_eg_compare=None,
sort_xax_by_measure=False,
attr1=None, oper1='>=',
val1=0, attr2=None,
oper2='>=', val2=0,
attr3=None, oper3='>=',
val3=0, pos_color='g',
neg_color='r',
pos_alpha=0.25,
neg_alpha=0.25,
bg_color=None,
zero_line_color='m', ti-
tle_size=16, label_size=14,
tick_size=12.5, leg-
end_size=12.5, xsize=14,
ysize=10, image_dir=None,
image_format='png')

Compare proposed integrated list locations of employees from different groups who share a
similar attribute value.

289

seniority_list Documentation, Release 0.65

This function is best used with date-type attributes, such as longevity date or date of hire.

The comparative list locations are a continuous list of index locations determined by finding
the last list position within an attribute column from another employee group which is less
than or equal to a corresponding column from the base employee group. A variance or
differential is calculated by comparing the base and comparative locations.

Attributes (measures) are sorted within each employee group prior to comparison. The x
axis may be arranged to display proposed list ordering or the attribute value range (typically
a date range).

Differences in list position are shown with a line above or below zero. One employee group
(base) is compared to other group(s) in the proposed list within a selected month. When the
line is above zero, it means that the base group cohort at a particular x axis position is on the
list ahead of another group cohort by an amount equal to the y displacement of the line. The
line colors correspond to the employee group color codes.

The default behavior is to compare the base group with all other groups at once, but single
group comparison may be accomplished as well.

When the x axis is set to display list location (not attribute values), the user may designate a
compare value. The list location of employees from each group who share the comparison
attribute value will be marked on the chart with a color-coded vertical line.

inputs

ds (dataframe) dataset for analysis

base (integer) employee group number code

sdict (dictionary) program settings dictionary

cdict (dictionary) program color dictionary

adict (dictionary) program attribute dictionary

measure (string) attribute column for list location comparison, likely ‘ldate’ or ‘doh’

compare_value (type to match measure input dtype) value to mark on chart if
“sort_xax_by_measure” input is False. Likely a date string, such as “2001-01-31”

mnum (integer) data model month number to study

ds_dict (dictionary) dictionary of datasets, likely generated by the “load_datasets”
function

single_eg_compare (integer) if not None, compare base employee group to this group
only

sort_xax_by_measure (boolean) if True, use an x axis for the chart based on the se-
lected measure. if False, use list location for the x axis

attr(n) (string) filter attribute or dataset column as string

290 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

pos_color, neg_color (color value string) color used for the positive and negative
area shading

pos_alpha, neg_alpha (integer or float) transparency value assigned to the positive
and negative color shading areas (0.0 to 1.0)

bg_color (color value string) if not None, the color for the chart background

zero_line_color (color value string) color for the zero line

title_size (integer or float) text size for the chart title

label_size (integer or float) text size for the chart axis labels

tick_size (integer or float) text size for the chart tick labels

legend_size (integer or float) text size for the chart legend

xsize, ysize (integer or float) size of the chart in inches (width, height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.cond_test(df, grp_sel, enhanced_jobs, job_colors,
job_dict, basic_jobs=None, ds_dict=None,
plot_all_jobs=False, min_mnum=None,
max_mnum=None, limit_to_jobs=None,
use_and=False, print_count_months=None,
print_all_counts=False,
plot_job_bands_chart=True,
only_target_bands=False, legend_size=14,
title_size=16, xsize=8, ysize=8, im-
age_dir=None, image_format='png')

visualize selected job counts over time applicable to computed condition with optional print-
ing of certain data.

Primary usage is validation of job assignment conditions by charting the count(s) of job(s)
assigned by the program to particular employee groups over time.

The function may also be used to evaluate distribution of jobs with various proposals. Career
progression of employees who enjoy special job rights may be understood particularily well

291

seniority_list Documentation, Release 0.65

by utilizing the print_all_counts option.

The output is 2 charts. The first chart is a line chart displaying selected job count information
over time. The second is a stacked area chart displaying all job counts for the selected
group(s) over time.

There are additional optional print outputs. The print_all_counts option will print a
dataframe containing job count totals for each month. The print_count_months input is a
list of months to print the only the plotted job counts, primarily for testing purposes.

inputs

df (dataframe) dataset(dataframe) to examine

grp_sel (list) integer input(s) representing the employee group code(s) to select for
analysis. This argument also will accept the string ‘sg’ to select a special job
rights group(s). Multiple inputs are normally handled as ‘or’ filters, meaning an
input of [1, ‘sg’] would mean employee group 1 or any special job rights group,
but can be modified to mean only group 1 and special job rights employees with
the ‘use_and’ input.

enhanced_jobs (boolean) if True, basic_jobs input job levels will be converted to en-
hanced job levels with reference to the job_dictionary input, otherwise basic_jobs
input job levels will be used

job_colors (list) list of color values to use for job plots

job_dict (dictionary) dictionary containing basic to enhanced job level conversion
data. This is likely the settings dictionary “jd” value.

basic_jobs (list) basic job levels to plot. This list will be converted to the correspond-
ing enhanced job list if the enhanced_jobs input is set to True. Defaults to [1] if
not assigned.

ds_dict (dictionary) dataset dictionary which allows df input to be a string description
(proposal name)

plot_all_jobs (boolean) option to plot all of the job counts within the input dataset vs
only those selected with the basic_jobs input (or as converted to enhanced jobs if
enhanced_jobs input is True). The jobs plotted may be filtered by the limit_to_jobs
input.

min_mnum (integer) integer input, only plot data including this month for-
ward(mnum). Defaults to zero.

max_mnum (integer) integer input, only plot data through selected month (mnum).
Defaults to maximum mnum for input data

limit_to_jobs (list) a list of jobs to plot, allowing focus on target jobs. Should be a
subset of normal output, otherwise no filtering of normal output occurs

292 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

use_and (boolean) when the grp_sel input has more than one element, require filtered
dataframe for analysis to be part of all grp_sel input sets.

print_count_months (list) list of month(s) for printing job counts

print_all_counts (boolean) if True, print the entire job count dataframe.

plot_job_bands_chart (boolean) if True, plot an area chart beneath the job count
chart. The area chart will display all of the jobs available to the selected employee
group(s) over time with job band areas

only_target_bands (boolean) if True, plot area chart of jobs from job count chart
only, vs the default of all job levels

legend_size (integer or float) text size of legend labels

title_size (integer or float) text size of chart title

xsize, ysize (integer or float) size of chart display in inches (width and height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.determine_dataset(ds_def, ds_dict=None, re-
turn_label=False)

this function permits either a dictionary key (string) or a dataframe variable to be used in
functions as a dataframe object.

inputs

ds_def (dataframe or string) A pandas dataframe or a string representing a key for a
dictionary which contains dataframe(s) as values

ds_dict (dictionary) A dictionary containing string to dataframes, used if ds_def input
is not a dataframe

return_label (boolean) If True, return a descriptive dataframe label if the ds_dict was
referenced, otherwise return a generic “Proposal” string

293

seniority_list Documentation, Release 0.65

matplotlib_charting.diff_range(df_list, dfb, measure, eg_list, attr_dict,
ds_dict=None, cm_name='Set1',
attr1=None, oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0,
year_clip=2042, show_range=False,
range_alpha=0.25, show_mean=True,
normalize_y=False, suptitle_size=16, ti-
tle_size=16, tick_size=13, label_size=16,
legend_size=14, chart_style='whitegrid',
ysize=6, xsize=11, image_dir=None, im-
age_format='png')

Plot a range of differential attributes or a differential average over time. Individual employee
groups and proposals may be selected. Each chart indicates the results for one group with
color bands or average lines indicating the results for that group under different proposals.
This is different than the usual method of different groups being plotted on the same chart.

inputs

df_list (list) list of datasets to compare, may be ds_dict (output of load_datasets func-
tion) string keys or dataframe variable(s) or mixture of each

dfb (dataframe, can be proposal string name) baseline dataset, accepts same input
types as df_list above

measure (string) differential data to compare

eg_list (list) list of integers for employee groups to be included in analysis. example:
[1, 2, 3] A chart will be produced for each employee group number.

eg_colors (list) list of colors to represent different proposal results

attr_dict (dictionary) dataset column name description dictionary

ds_dict (dictionary) output from load_datasets function

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

year_clip (integer) only plot data up to and including this year

show_range (boolean) show a transparent background on the chart representing the
range of values for each measure for each proposal

range_alpha (float) transparancy level for range plotting (0.0 to 1.0)

show_mean (boolean) plot a line representing the average of the measure values for
the group under each proposal

294 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

normalize_y (boolean) if measure is ‘spcnt’ or ‘lspcnt’, equalize the range of the y
scale on all charts (-.5 to .5)

suptitle_size (integer or font) text size of chart super title

title_size (integer or font) text size of chart title

tick_size (integer or font) text size of chart tick labels

label_size (integer or font) text size of chart x and y axis labels

legend_size (integer or font) text size of the legend labels

chart_style (string) any valid seaborn plotting style (string)

xsize, ysize (integer or font) size of chart in inches (width and height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.differential_scatter(df_list, dfb, measure,
eg_list, attr_dict, color_dict,
p_dict, ds_dict=None,
attr1=None, oper1='>=',
val1=0, attr2=None,
oper2='>=', val2=0,
attr3=None, oper3='>=',
val3=0, prop_order=True,
show_scatter=True,
show_lin_reg=True,
show_mean=True,
mean_len=50, dot_size=15,
lin_reg_order=15,
ylimit=False, ylim=5,
suptitle_size=14, ti-
tle_size=12, legend_size=14,
tick_size=11, label_size=12,
bright_bg=False,
bright_bg_color='#faf6eb',
chart_style='whitegrid',
xsize=12, ysize=8, im-
age_dir=None, im-
age_format='png')

plot an attribute differential between datasets.

295

seniority_list Documentation, Release 0.65

datasets may be filtered by other attributes if desired.

Example: plot the difference in cat_order (job rank number) between all integrated datasets
vs. standalone for all employee groups, applicable to month 57. (optionally add a pre-
filter(s), such as all employees hired prior to a certain date)

The chart may be set to use proposal order or native list percentage for the x axis.

The scatter markers are selectable on/off, as well as an average line and a linear regression
line.

inputs

df_list (list) list of datasets to compare, may be ds_dict (output of load_datasets func-
tion) string keys or dataframe variable(s) or mixture of each

dfb (string or variable) baseline dataset, accepts same input types as df_list above

measure (string) attribute to analyze

eg_list (list) list of employee group codes

attr_dict (dictionary) dataset column name description dictionary

color_dict (dictionary) dictionary containing color list string titles to lists of color
values generated by the build_program_files script

p_dict (dictionary) employee group code number to description dictionary

ds_dict (dictionary) output from load_datasets function

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

eg_list (list) a list of employee groups to analyze

prop_order (boolean) if True, organize x axis by proposal list order, otherwise use
native list percent

show_scatter (boolean) if True, draw the scatter chart markers

show_lin_reg (boolean) if True, draw linear regression lines

show_mean (boolean) if True, draw average lines

mean_len (integer) moving average length for average lines

dot_size (integer or float) scatter marker size

lin_reg_order (integer) regression line is actually a polynomial regression
lin_reg_order is the degree of the fitting polynomial

ylimit (boolean) if True, set chart y axis limit to ylim (below)

296 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

ylim (integer or float) y axis limit positive and negative if ylimit is True

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) text size of chart title

legend_size (integer or float) text size of chart legend labels

tick_size (integer or float) text size of x and y tick labels

label_size (integer or float) text size of x and y descriptive labels

bright_bg (boolean) use a custom color chart background

bright_bg_color (color value) chart background color if bright_bg input is set to True

chart_style (string) style for chart, valid inputs are any seaborn chart style

xsize, ysize (integer or float) size of chart (width, height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.display_proposals()
print out a list of the proposal names which were generated and stored in the dill folder by
the build_program_files script

no inputs

297

seniority_list Documentation, Release 0.65

matplotlib_charting.eg_attributes(ds, xmeasure, ymeasure, sdict, adict,
cdict, eg_list=None, mnum=None,
ret_only=False, ds_dict=None,
attr1=None, oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0,
q_eglist_only=True, xquant_lines=True,
x_quantiles=10, xl_alpha=1,
xl_ls='dashed', xl_lw=1, xl_color='.7',
x_bands=True, xb_fc='.3',
xb_alpha=0.09, yquant_lines=True,
y_quantiles=10, yl_alpha=1,
yl_ls='dashed', yl_lw=1, yl_color='.7',
y_bands=True, yb_fc='#66ffb3',
yb_alpha=0.09, linestyle='',
linewidth=0, markersize=5,
marker_alpha=0.7, grid_alpha=0.25,
chart_style='ticks', full_xpcnt=True,
full_ypcnt=True, xax_rotate=70,
label_size=13, qtick_size=12,
tick_size=12, border_size=0.5,
legend_size=14, title_size=18,
y_title_pos=1.12, box_height=0.95,
xsize=15, ysize=11, image_dir=None,
image_format='png')

Plot selected employee group(s) attribute data.

Chart x and y axes may be any dataset attributes, including date attributes.

Quantile membership for the x and/or y attribute may also be displayed. Membership may
be relative to the entire integrated population or only to the employee group(s) selected for
display (q_eglist_only input).

inputs

ds (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

xmeasure (string) attribute to plot on x axis

ymeasure (string) attribute to plot on y axis

sdict (dictionary) program settings dictionary

adict (dictionary) dataset column name description dictionary

cdict (dictionary) program colors dictionary

eg_list (list) list of employee groups to plot (integer codes)

298 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

mnum (integer) month number for analysis

ret_only (boolean) if True, mnum input is ignored and results are displayed for all
employees at retirement

ds_dict (dictionary) output of the load_datasets function, dictionary. This keyword
argument must be set if a string key is used as the df input.

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

q_eglist_only (boolean) if set to True:

if quantile bands are displayed, show membership based on selected em-
ployee groups (eg_list input).

if set to False:

if quantile bands are displayed, show membership based on the integrated
group population (all groups).

xquant_lines (boolean) if True, show quantile membership for x axis attribute

x_quantiles (integer) number of quantiles to display if xquant_lines input is True

xl_alpha (float) transparency value of x axis quantile lines (0.0 to 1.0)

xl_ls (string) x axis quantile lines linestyle (‘dashed’, ‘dotted’, etc.)

xl_lw (integer or float) x axis quantile lines line width

xl_color (string color value) x axis quantile lines color

x_bands (boolean) if True, show a background color within every other x axis quantile
membership area

xb_fc (string color value) x axis quantile bands background color

xb_alpha (float) x axis quantile bands color transparency value (0.0 to 1.0)

yquant_lines (boolean) if True, show quantile membership for y axis attribute

y_quantiles (integer) number of quantiles to display if yquant_lines input is True

yl_alpha (float) transparency value of y axis quantile lines (0.0 to 1.0)

yl_ls (string) y axis quantile lines linestyle (‘dashed’, ‘dotted’, etc.)

yl_lw (integer or float) y axis quantile lines line width

yl_color (string color value) y axis quantile lines color

299

seniority_list Documentation, Release 0.65

y_bands (boolean) if True, show a background color within every other y axis quantile
membership area

yb_fc (string color value) y axis quantile bands background color

yb_alpha (float) y axis quantile bands color transparency value (0.0 to 1.0)

markersize (integer or float) size of chart scatter points

marker_alpha (integer or float) transparency setting for plot lines or points (0.0 to
1.0)

grid_alpha (float) transparency value for the chart grid corresponding to the x and y
attribute values (not the quantile membership lines)

chart_style (string) any valid seaborn chart style name

full_xpcnt (boolean) if True, show full range percentage (0 to 100 percent) when a
percentage attribute is displayed on the x axis

full_ypcnt (boolean) if True, show full range percentage (0 to 100 percent) when a
percentage attribute is displayed on the y axis

xax_rotate (integer) rotation value (in degrees) for the x axis tick labels

qtick_size (integer or float) text size of the quantile membership tick labels

tick_size (integer or float) text size of the x and y attribute tick labels

label_size (integer or float) text size of x and y axis labels

border_size (integer or float) width of the chart border line (chart spines)

legend_size (integer or float) text size of chart legend

title_size (integer or float) text size of chart title

y_title_pos (float) vertical position of the chart title when attribute filtering has been
applied. (typical values are 1.1 to 1.2)

box_height (float) chart height multiplier which slightly shrinks vertical chart area for
proper printing (saving) purposes. This input does not affect the displayed values.

xsize, ysize (integer or float) plot size in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

300 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

matplotlib_charting.eg_boxplot(df_list, eg_list, eg_colors, job_clip,
attr_dict, measure='spcnt', ds_dict=None,
attr1=None, oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0,
year_clip=2035, exclude_fur=False, satura-
tion=0.8, chart_style='dark', width=0.7,
notch=True, show_whiskers=True,
show_xgrid=True, show_ygrid=True,
grid_alpha=0.4, grid_linestyle='solid',
whisker=1.5, fliersize=1.0, linewidth=0.75,
suptitle_size=14, title_size=12,
tick_size=11, label_size=12, xsize=12,
ysize=8, image_dir=None, im-
age_format='png')

create a box plot chart displaying ACTUAL attribute values (vs. differential values) from a
selected dataset(s) for selected employee group(s).

inputs

df_list (list) list of datasets to compare, may be ds_dict (output of load_datasets func-
tion) string keys or dataframe variable(s) or mixture of each

eg_list (list) list of integers for employee groups to be included in analysis example:
[1, 2, 3]

measure (string) attribute for analysis

eg_colors (list) list of colors for plotting the employee groups

attr_dict (dictionary) dataset column name description dictionary

ds_dict (dictionary) output from load_datasets function

job_clip (float) if measure is jnum or jobp, limit max y axis range to this value

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

year_clip (integer) only present results through this year

exclude_fur (boolean) remove all employees from analysis who are furloughed
within the data model at any time (boolean)

chart_style (string) chart styling (string), any valid seaborn chart style

width (float) plotting width of boxplot or grouped boxplots for each year. a width of
1 leaves no gap between groups

301

seniority_list Documentation, Release 0.65

notch (boolean) If True, show boxplots with a notch at median point

show_xgrid (boolean) include vertical grid lines on chart

show_ygrid (boolean) include horizontal grid lines on chart

grid_alpha (float) opacity value for grid lines

grid_linestyle (string) examples: ‘solid’, ‘dotted’, ‘dashed’

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) text size of chart title

tick_size (integer or float) text size of x and y tick labels

label_size (integer or float) text size of x and y descriptive labels

xsize, ysize (integer or float) width and hieght of plot in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.eg_diff_boxplot(df_list, dfb, eg_list, eg_colors,
job_levels, job_diff_clip, attr_dict,
measure='spcnt', compari-
son='baseline', ds_dict=None,
attr1=None, oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0,
suptitle_size=14, title_size=12,
tick_size=11, label_size=12,
year_clip=None, exclude_fur=False,
width=0.8, chart_style='dark',
notch=True, linewidth=1.0,
xsize=12, ysize=8, image_dir=None,
image_format='png')

create a DIFFERENTIAL box plot chart comparing a selected measure from computed inte-
grated dataset(s) vs. a baseline (likely standalone) dataset or with other integrated datasets.

inputs

df_list (list) list of datasets to compare, may be ds_dict (output of load_datasets func-
tion) string keys or dataframe variable(s) or mixture of each

dfb (string or variable) baseline dataset, accepts same input types as df_list above

302 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

eg_list (list) list of integers for employee groups to be included in analysis example:
[1, 2, 3]

eg_colors (list) corresponding plot colors for eg_list input

job_levels (integer) number of job levels in the data model (excluding furlough)

job_diff_clip (integer) if measure is jnum or jobp, limit y axis range to +/- this value

attr_dict (dictionary) dataset column name description dictionary

measure (string) differential data to compare

comparison (string) if ‘p2p’ (proposal to proposal), will compare proposals within
the df_list to each other, otherwise will compare proposals to the baseline dataset
(dfb)

ds_dict (dictionary) output from load_datasets function

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) text size of chart title

tick_size (integer or float) text size of x and y tick labels

label_size (integer or float) text size of x and y descriptive labels

year_clip (integer) only present results through this year if not None

exclude_fur (boolean) remove all employees from analysis who are furloughed
within the data model at any time

use_eg_colors (boolean) use case-specific employee group colors vs. default colors

width (float) plotting width of boxplot or grouped boxplots for each year. a width of
1 leaves no gap between groups

chart_style (string) chart styling (string), any valid seaborn chart style

notch (boolean) If True, show boxplots with a notch at median point vs. only a line

xsize, ysize (integer or float) plot size in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

303

seniority_list Documentation, Release 0.65

‘svg’, ‘png’

matplotlib_charting.eg_multiplot_with_cat_order(df, mnum, mea-
sure, xax, job_strs,
job_level_colors,
job_levels, set-
tings_dict,
attr_dict,
color_dict, egs=[],
ds_dict=None,
fur_color=None,
exclude_fur=False,
plot_scatter=True,
s=20, a=0.7, lw=0,
job_bands_alpha=0.3,
title_size=14,
tick_size=12,
label_pad=110,
chart_style='whitegrid',
re-
move_ax2_border=True,
lgd_h_adj=None,
xsize=13,
ysize=10, im-
age_dir=None, im-
age_format='png')

plot any dataset attributes as x or y values for comparison

when “cat_order” is selected as measure, show job category bands

inputs

df (dataframe) pandas dataframe input

mnum (integer) month number for analysis

measure (string) dataframe column name (attribute for analysis)

xax (string) x axis attribute

job_strs (list) list of job descriptions for labels (normally sdict[‘job_strs’])

job_level_colors (list) list of colors for job level zones (normally cdict[‘job_colors’])

job_levels (integer) number of job levels in model (sdict[‘num_of_job_levels’])

settings_dict (dictionary) program job settings dictionary

attr_dict (dictionary) program attribute name to attribute description dictionary

color_dict (dictionary) color dictionary

304 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

egs (list) list of employee groups for plotting

ds_dict (dictionary) output from load_datasets function

fur_color (string color value) if not None, color for furlough span color

exclude_fur (boolean) if True, remove furloughed employees from input data

plot_scatter (boolean) if True (default), plot a scatter chart, otherwise plot a line chart

s (integer or float) size of scatter markers if a plot_scatter input is True

a (float) transparency value for both line plots and scatter plots (0.0 to 1.0)

lw (integer or float) width of maker edge lines with a scatter plot

job_bands_alpha (float) transparency value for job level color spans

title_size (integer or float) text size of chart title

tick_size (integer or float) text size of chart tick labels

label_pad (integer) minimum padding between job description labels that would oth-
erwise overlap

chart_style (string) any seaborn plotting style name

remove_ax2_border (boolean) if True, remove axis 2 (ax2) chart spines

xsize, ysize (integer or float) width and height of chart

lgd_h_adj (float) set to a small float value (for example: .02, -.01) to adjust the hor-
izontal position of the chart legend if required. Use negative values to move left,
positive values to move right

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.emp_quick_glance(empkey, df, ds_dict=None, ti-
tle_size=14, tick_size=13, lw=4,
chart_style='dark', xsize=8,
ysize=48, image_dir=None, im-
age_format='png')

view basic stats for selected employee and proposal

A separate chart is produced for each measure.

inputs

305

seniority_list Documentation, Release 0.65

empkey (integer) employee number (in data model)

df (dataframe) dataset to study, will accept string proposal name

ds_dict (dictionary) variable assigned to load_datasets function output

title_size (integer or float) text size of chart title

tick_size (integer or font) text size of chart tick labels

lw (integer or float) line width of plot lines

chart_style (string) any valid seaborn charting style

xsize, ysize (integer or float) size of chart display

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.filter_ds(ds, attr1=None, oper1=None, val1=None,
attr2=None, oper2=None, val2=None,
attr3=None, oper3=None, val3=None,
return_title_string=True)

Filter a dataset (dataframe) by attribute(s).

Filter process is ignored if attr(n) input is None. All attr, oper, and val inputs must be strings.
Up to 3 attribute filters may be combined.

Attr, oper, and val inputs are combined and then evaluated as expressions.

If return_title_string is set to True, returns tuple (ds, title_string), otherwise returns ds.

inputs

ds (dataframe) the dataframe to filter

attr(n) (string) an attribute (column) to filter. Example: ‘ldate’

oper(n) (string) an operator to apply to the attr(n) input. Example: ‘<=’

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

return_title_string (boolean) If True, returns a string which dexcribes the filter(s)
applied to the dataframe (ds)

306 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

matplotlib_charting.group_average_and_median(dfc, dfb, eg_list,
eg_colors, mea-
sure, job_levels,
settings_dict, attr_dict,
ds_dict=None,
attr1=None,
oper1='>=',
val1='0', attr2=None,
oper2='>=',
val2='0', attr3=None,
oper3='>=', val3='0',
plot_median=False,
plot_average=True,
compare_to_dfb=True,
use_filtered_results=True,
show_full_yscale=False,
job_labels=True,
max_date=None,
chart_style='whitegrid',
xsize=14, ysize=8,
image_dir=None,
image_format='png')

Plot group average and/or median for a selected attribute over time for compare and/or base
datasets. Standalone data may be used as compare or baseline data.

Results may be further filtered/sliced by up to 3 constraints, such as age, longevity, or job
level.

This function can plot basic data such as average list percentage or could, for example,
plot the average job category rank for employees hired prior to a certain date who are over
or under a certain age, for a selected integrated dataset and/or standalone data (or for two
integrated datasets).

inputs

dfc (string or dataframe variable) comparative dataset to examine, may be a
dataframe variable or a string key from the ds_dict dictionary object

dfb (string or dataframe variable) baseline dataset to plot (likely use standalone
dataset here for comparison, but may plot and compare any dataset), may be a
dataframe variable or a string key from the ds_dict dictionary object

eg_list (list) list of integers representing the employee groups to analyze (i.e. [1, 2])

eg_colors (list) list of colors for plotting the employee groups

measure (string) attribute (column) to compare, such as ‘spcnt’ or ‘jobp’

job_levels (integer) number of job levels in the data model

307

seniority_list Documentation, Release 0.65

settings_dict (dictionary) program settings dictionary generated by the
build_program_files script

attr_dict (dictionary) dataset column name description dictionary

ds_dict (dictionary) dataset dictionary (variable assigned to the output of
load_datasets function)

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

plot_meadian (boolean) plot the median of the measure for each employee group

plot_average (boolean) plot the average(mean) of the measure for each employee
group

compare_to_dfb (boolean) plot average dfb[measure] data as dashed line. (likely
show standalone data with dfb, or reverse and show standalone as primary and
integrated as dfb) (dfb refers to baseline dataframe or dataset)

use_filtered_results (boolean) if True, use the same employees from the filtered pro-
posal list. For example, if the dfc list is filtered by age only, the dfb list could be
filtered by the same age and return the same employees. However, if the dfc list
is filtered by an attribute which diverges from the dfb measurements for the same
attribute, a different set of employees could be returned. This option ensures that
the same group of employees from both the dfc (filtered first) list and the dfb list
are compared. (dfc refers to the comparison proposal, dfb refers to baseline)

show_full_yscale (boolean) if measure input is one of these: ‘jnum’, ‘nbnf’, ‘jobp’,
‘fbff’, if True, show all job levels on chart. Otherwise, allow chart to autoscale
with plotted data

job_labels (boolean) if measure input is one of these: ‘jnum’, ‘nbnf’, ‘jobp’, ‘fbff’,
use job text description labels vs. number labels on the y axis of the chart (boolean)

max_date (date string) maximum chart date. If set to ‘None’, the maximum chart
date will be the maximum date within the list data.

chart_style (string) option to specify alternate seaborn chart style

xsize, ysize (integer or float) x and y size of chart in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

308 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

‘svg’, ‘png’

matplotlib_charting.job_count_bands(df_list, eg_list, job_colors,
settings_dict, ds_dict=None,
emp_list=None, attr1=None,
oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0,
fur_color=None, show_grid=True,
max_date=None, plot_alpha=0.75,
legend_alpha=0.9, legend_xadj=1.3,
legend_yadj=1.0, legend_size=11,
title_size=14, tick_size=12, la-
bel_size=13, chart_style='darkgrid',
xsize=13, ysize=8, image_dir=None,
image_format='png')

area chart representing count of jobs available over time

This chart displays the future job opportunities for each employee group with various list
proposals.

This is not a comparative chart (for example, with standalone data), it is simply display-
ing job count outcome over time. However, the results for the employee groups may be
compared and measured for equity.

Inputs

df_list (list) list of datasets to compare, may be ds_dict (output of load_datasets func-
tion) string keys or dataframe variable(s) or mixture of each

eg_list (list) list of integers for employee groups to be included in analysis example:
[1, 2, 3]

job_colors (list) list of colors to represent job levels

settings_dict (dictionary) program settings dictionary generated by the
build_program_files script

ds_dict (dictionary) output from load_datasets function

emp_list (list) optional list of employee number(s) to plot (empkey attribute)

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

fur_color (color code in rgba, hex, or string style) custom color to signify fur-
loughed job level band (otherwise, last color in job_colors input will be used)

309

seniority_list Documentation, Release 0.65

max_date (date string) only include data up to this date example input: ‘1997-12-31’

plot_alpha (float, 0.0 to 1.0) alpha value (opacity) for area plot (job level bands)

legend_alpha (float, 0.0 to 1.0) alpha value (opacity) for legend markers

legend_xadj, legend_yadj (floats) adjustment input for legend horizontal and vertical
placement

legend_size (integer or float) text size of legend labels

title_size (integer or float) text size of chart title

tick_size (integer or float) text size of x and y tick labels

label_size (integer or float) text size of x and y descriptive labels

chart_style (string) chart styling (string), any valid seaborn chart style

xsize, ysize (integer or float) plot size in inches (width and height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.job_count_charts(dfc, dfb, settings_dict, eg_colors,
eg_list=None, ds_dict=None,
attr1=None, oper1='>=',
val1=0, attr2=None, oper2='>=',
val2=0, attr3=None, oper3='>=',
val3=0, plot_egs_sep=False,
plot_total=True, xax='date',
year_max=None,
chart_style='darkgrid', base_ls='-
', prop_ls=':', base_lw=1.6,
prop_lw=2.5, suptitle_size=14,
title_size=12, total_color='g',
xsize=5, ysize=4, image_dir=None,
image_format='png')

line-style charts displaying job category counts over time.

optionally display employee group results on separate charts or together

inputs

dfc (dataframe) proposal (comparison) dataset to examine, may be a dataframe vari-
able or a string key from the ds_dict dictionary object

310 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

dfb (dataframe) baseline dataset; proposal dataset is compared to this dataset, may be
a dataframe variable or a string key from the ds_dict dictionary object

settings_dict (dictionary) program settings dictionary generated by the
build_program_files script

eg_colors (list) list of color values for plotting the employee groups, length is equal to
the number of employee groups in the data model

eg_list (list) list of employee group codes to plot Example: [1, 2]

ds_dict (dictionary) variable assigned to load_datasets function output

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

plot_egs_sep (boolean) if True, plot each employee group job level counts separately

plot_total (boolean) if True, include the combined job counts on chart(s)

xax (string) x axis groupby attribute, options are ‘date’ or ‘mnum’, default is ‘date’

year_max (integer) maximum year to include on chart Example: if input is 2030,
chart would display data from beginning of data model through 2030 (integer)

base_ls (string) line style for base job count line(s)

prop_ls (string) line style for comparison (proposal) job count line(s)

base_lw (float) line width for base job count line(s)

prop_lw (float) line width for comparison (proposal) job count lines

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) chart title(s) font size

total_color (color value) color for combined job level count from all employee groups

xsize, ysize (integer or float) size of chart display in inches (width and height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

311

seniority_list Documentation, Release 0.65

matplotlib_charting.job_grouping_over_time(df, eg_list, jobs,
job_colors, p_dict,
plt_kind='bar',
ds_dict=None,
rets_only=True,
attr1=None, oper1='>=',
val1=0, attr2=None,
oper2='>=', val2=0,
attr3=None, oper3='>=',
val3=0, time_group='A',
display_yrs=40,
legend_loc=4,
chart_style='darkgrid',
suptitle_size=14, ti-
tle_size=12, leg-
end_size=13,
tick_size=11, la-
bel_size=13, xsize=12,
ysize=10, im-
age_dir=None, im-
age_format='png')

Inverted bar chart display of job counts by group over time. Various filters may be applied
to study slices of the datasets.

The ‘rets_only’ option will display the count of employees retiring from each year grouped
by job level.

developer TODO: fix x axis scaling and labeling when quarterly (“Q”) or monthly (“M”)
time group option selected.

inputs

df (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

eg_list (list) list of unique employee group numbers within the proposal Example: [1,
2]

jobs (list) list of job label strings (for plot legend)

job_colors (list) list of colors to be used for plotting

p_dict (dictionary) employee group to string description dictionary

plt_kind (string) ‘bar’ or ‘area’ (bar recommended)

ds_dict (dictionary) output from load_datasets function

rets_only (boolean) calculate for employees at retirement age only

attr(n) (string) filter attribute or dataset column as string

312 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

time_group (string) group counts/percentages by year (‘A’), quarter (‘Q’), or month
(‘M’)

display_years (integer) when using the bar chart type display, evenly scale the x axis
to include the number of years selected for all group charts

legend_loc (integer) matplotlib legend location number code

2 9 1
6 10 7
3 8 4

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) text size of chart title

legend_size (integer or float) text size of chart legend labels

tick_size (integer or float) text size of x and y tick labels

label_size (integer or float) text size of x and y descriptive labels

xsize, ysize (integer or float) size of each chart in inches (width, height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

313

seniority_list Documentation, Release 0.65

matplotlib_charting.job_level_progression(df, emp_list, through_date,
settings_dict, color_dict,
eg_colors, band_colors,
ds_dict=None,
rank_metric='cat_order',
chart_style='white',
show_implementation_date=True,
job_bands_alpha=0.1,
max_plots_for_legend=5,
xgrid_alpha=0.65,
xgrid_linestyle='dotted',
ygrid_alpha=0.5,
ygrid_linestyle='dotted',
tick_size=13,
job_descr_size=12.5,
job_descr_pad=115, la-
bel_size=15, title_size=18,
xsize=12, ysize=10,
image_dir=None, im-
age_format='png')

show employee(s) career progression through job levels regardless of actual positioning
within integrated seniority list.

This x axis of this chart represents rank within job category. There is an underlying stacked
area chart representing job level bands, adjusted to reflect job count changes over time.

This chart reveals actual career path considering no bump no flush, special job assignment
rights/restrictions, and furlough/recall events.

Actual jobs held may not be correlated to jobs normally associated with a certain list per-
centage for many years due to job assignment factors.

inputs

df (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

emp_list (list) list of empkeys to plot

through_date (date string) string representation of y axis date limit, ex. ‘2025-12-
31’

settings_dict (dictionary) program settings dictionary generated by the
build_program_files script

color_dict (dictionary) dictionary containing color list string titles to lists of color
values generated by the build_program_files script

eg_colors (list) colors to be used for employee line plots corresponding to employee
group membership

314 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

band_colors (list) list of colors to be used for stacked area chart which represent job
level bands

ds_dict (dictionary) output from load_datasets function

rank_metric (string) column name for y axis chart ranking. Currently only
‘cat_order’ is valid.

chart_style (string) any valid seaborn plotting chart style name

show_implementation_date (boolean) plot a vertical dashed line at the implementa-
tion date

job_bands_alpha (float) opacity level of background job bands stacked area chart

max_plots_for_legend (integer) if number of plots more than this number, reduce
plot linewidth and remove legend

xgrid_alpha, ygrid_alpha (float) transparency value for grid. x and y axis may be set
independently

xgrid_linestyle, ygrid_linestyle (string) matplotlib line style for grid, such as “dot-
ted” or “dashed”. x and y axis may be set independently

job_descr_size (integer or float) font size of job description text labels on right side
of chart

job_descr_pad (integer) padding to add between job description labels when they
would otherwise overlap

tick_size (intger or float) font size of tick labels

job_descr_size (integer or float) font size of job description labels

label_size (integer or float) font size of axis labels

title_size (integer or label) font size of title

xsize, ysize (integer or float) plot size in inches (width, height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

315

seniority_list Documentation, Release 0.65

matplotlib_charting.job_time_change(ds_list, ds_base, eg_list, job_colors,
job_strs_dict, job_levels,
attr_dict, xax, ds_dict=None,
attr1=None, oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0,
marker='o', edgecolor='k',
linewidth=0.05, size=25, al-
pha=0.95, bg_color='#ffffff',
x_max=1.02, limit_yax=False,
ylimit=40, zeroline_color='m', zero-
line_width=1.5, pos_neg_face=True,
pos_neg_face_alpha=0.03,
legend_job_strings=True,
legend_position=1.18, leg-
end_marker_size=130,
suptitle_size=16, ti-
tle_size=14, tick_size=12,
chart_style='whitegrid', la-
bel_size=13, xsize=12, ysize=10, im-
age_dir=None, image_format='png',
experimental=False)

Plots a scatter plot displaying monthly time in job differential, by proposal and employee
group. X axis percentage reflects first month within each comparative dataset, which will be
the same as standalone for all groups unless the data model implementation date occurs at
month zero.

inputs

ds_list (list) list of datasets to compare, may be ds_dict (output of load_datasets func-
tion) string keys or dataframe variable(s) or mixture of each

ds_base (string or variable) baseline dataset, accepts same input types as ds_list
above

eg_list (list) list of integers for employee groups to be included in analysis example:
[1, 2, 3]

job_levels (integer) number of job levels in the data model

job_colors (list) list of color values for job level plotting

job_strs_dict (dictionary) dictionary of job code (integer) to job description label

attr_dict (dictionary) dataset column name description dictionary

xax (string) list percentage attrubute, i.e. spcnt or lspcnt

ds_dict (dictionary) output from load_datasets function

316 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

job_colors (list) list of color values for the job level plotting

job_strs_dict (dictionary) job number to job label dictionary

marker (string) scatter chart matplotlib marker type

edgecolor (color value) matplotlib marker edge color

linewidth (integer or float) matplotlib marker edge line size

size (integer or float) size of markers

alpha (float) marker alpha (transparency) value

bg_color (color value) background color of chart if not None

x_max (integer or float) high limit of chart x axis

limit_yax (integer or float) if True, restrict plot y scale to this value may be used to
prevent outliers from exagerating chart scaling

ylimit (integer or float) y axis limit if limit_yax is True

zeroline_color (color value) color for zeroline on chart

zeroline_width (integer or float) width of zeroline

pos_neg_face (boolean) if True, apply a light green tint to the chart area above the
zero line, and a light red tint below the line

legend_job_strings (boolean) if True, use job description strings in legend vs. job
numbers

legend_position (float) controls the horizontal position of the legend

legend_marker_size (integer or float) adjusts the size of the legend markers

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) text size of chart title

tick_size (integer or float) text size of chart tick labels

xsize, ysize (integer or float) x and y size of each plot in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

317

seniority_list Documentation, Release 0.65

Examples:

‘svg’, ‘png’

experimental (boolean) show additional output under development consisting of a ta-
ble, heatmap, and bar chart

matplotlib_charting.job_transfer(dfc, dfb, eg, job_colors,
job_levels, job_strs, p_dict,
ds_dict=None, gb_period='M',
min_date=None, max_date=None,
tgt_jobs_list=None, job_alpha=0.85,
chart_style='whitegrid', fur_color=None,
draw_face_color=False,
draw_grid=True, grid_alpha=0.2,
zero_line_color='m', yt-
ick_interval=None, y_limit=None,
title_size=14, legend_size=12, xsize=14,
ysize=9, image_dir=None, im-
age_format='png')

plot a differential stacked area chart displaying color-coded job transfer counts over time.

Output chart is actually 2 area charts (one for positive values and one for negative values)
displayed on a shared axis.

inputs

dfc (dataframe) proposal (comparison) dataset to examine, may be a dataframe vari-
able or a string key from the ds_dict dictionary object

dfb (dataframe) baseline dataset; proposal dataset is compared to this dataset, may be
a dataframe variable or a string key from the ds_dict dictionary object

eg (integer) integer code for employee group

job_colors (list) list of colors for job levels, may be value from color dictionary

job_levels (integer) number of job levels in data model

job_strs (list) list of job descriptions (labels)

p_dict (dictionary) dictionary of employee number codes to verbose string descrip-
tion, (normally “p_dict_verbose” from the settings dictionary)

Example:

{0: 'Standalone', 1: 'Acme', 2: 'Southern'}

ds_dict (dictionary) output from load_datasets function

gb_period (string) group_by period. default is ‘M’ for monthly, other options are ‘Q’
for quarterly and ‘A’ for annual

318 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

min_date (string date format) if set, analyze job transfer data from this date forward

max_date (string date format) if set, analyze job transfer data up to this date

tgt_jobs_list (list) if not None, only plot job level(s) in this list

job_alpha (float) chart alpha level for job transfer plotting (0.0 - 1.0)

chart_style (string) seaborn plotting library style

fur_color (color code in rgba, hex, or string style) custom color to signify fur-
loughed employees (otherwise, last color in job_colors input will be used)

draw_face_color (boolean) apply a transparent background to the chart, red below
zero and green above zero

draw_grid (boolean) show major tick label grid lines

grid_alpha (float) opacity setting for grid lines (0.0 - 1.0)

zero_line_color (color value) color of the horizontal line a zero

ytick_interval (integer) optional manual ytick spacing setting (function has auto-
spacing built in)

y_limit (integer) optional manual y axis chart limit (enter positive value only). This
input may be used to “lock” vertical scaling (shut off auto_scaling) for comparing
gains and losses between proposals and employee groups.

title_size (integer or float) chart title text size

legend_size (integer or float) chart legend text size

xsize (integer or float) horizontal size of chart

ysize (integer or float) vertical size of chart

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.make_color_list(num_of_colors=10, start=0.0,
stop=1.0, exclude=None, re-
verse=False, cm_name_list=['Set1'],
return_list=True, return_dict=False,
print_all_names=False,
palplot_cm_name=False,
palplot_all=False)

Utility function to generate list(s) of colors (rgba format), any length and any from any

319

seniority_list Documentation, Release 0.65

section of any matplotlib colormap.

The function can return a list of colors, a dictionary of colormaps to color lists, plot result(s)
as seaborn palplot(s), and print out the names of all of the colormaps available.

The end goal of this function is to provide customized color lists for plotting.

inputs

num_of_colors (integer) number of colors to produce for the output color list(s), used
within the cm_subsection data calculation

start (float) the starting point within the selected colormap to begin the spectrum color
selection (0.0 to 1.0), used within the cm_subsection data calculation

stop (float) the ending point within the selected colormap to end the spectrum color
selection (0.0 to 1.0), used within the cm_subsection data calculation

exclude (list) list of 2 floats representing a section of the colormap(s) to remove before
calculating the result list(s).

reverse (boolean) reverse the color list order which reverses the color spectrum

cm_name_list (list) any matplotlib colormap name(s)

return_list (boolean) if True, return a list of rgba color codes for the cm_name_list
colormap input only, or (if the return_dict input is set to True) a dictionary of all
colormap names to all of the resultant corresponding calculated color lists using
the cm_subsection data

return_dict (boolean) if True (and return_list is True), return a dictionary of all col-
ormap names to all of the resultant corresponding calculated color lists

print_all_names (boolean) if True (and return_list is False), print all the names of
available matplotlib colormaps

palplot_cm_name (boolean) if True (and return_list is set to False), plot a seaborn
palplot of the color list produced with the cm_name_list colormap input using the
cm_subsection data

palplot_all (boolean) if True (and return_list and palplot_cm_name are False), plot
a seaborn palplot for all of the color lists produced from all available matplotlib
colormaps using the cm_subsection data

matplotlib_charting.mark_quantiles(df, quantiles=10)
add a column to the input dataframe identifying quantile membership as integers (the column
is named “quantile”). The quantile membership (category) is calculated for each employee
group separately, based on the employee population in month zero.

The output dataframe permits attributes for employees within month zero quantile categories
to be be analyzed throughout all the months of the data model.

320 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

The number of quantiles to create within each employee group is selected by the “quantiles”
input.

The function utilizes numpy arrays and functions to compute the quantile assignments, and
pandas index data alignment feature to assign month zero quantile membership to the long-
form, multi-month output dataframe.

This function is used within the quantile_groupby function.

inputs

df (dataframe) Any pandas dataframe containing an “eg” (employee group) column

quantiles (integer) The number of quantiles to create.

example:

If the input is 10, the output dataframe will be a column of integers 1 - 10. The
count of each integer will be the same. The first quantile members will be marked
with a 1, the second with 2, etc., through to the last quantile, 10.

matplotlib_charting.multiline_plot_by_emp(df, measure, xax, emp_list,
job_levels, ret_age,
color_list, job_str_list, sdict,
attr_dict, ds_dict=None,
plot_jobp=False,
show_implementation_date=True,
through_date=None,
pcnt_ylimit=1.0,
chart_style='ticks',
linewidth=3,
line_alpha=0.7,
grid_linestyle='dotted',
grid_alpha=0.75, leg-
end_size=14, label_size=13,
tick_size=13, title_size=18,
xsize=12, ysize=9, im-
age_dir=None, im-
age_format='png')

select example individual employees and plot career measure from selected dataset attribute,
i.e. list percentage, career earnings, job level, etc.

inputs

df (dataframe) dataset to examine, may be a dataframe or a string key with the ds_dict
dictionary object

measure (string) dataset attribute to plot. Usually only one attribute to plot, but may
be more than one, such as ‘jnum’ and ‘jobp’

xax (string) dataset attribute for x axis

321

seniority_list Documentation, Release 0.65

emp_list (list) list of employee numbers or ids

job_levels (integer) number of job levels in model

ret_age (float) retirement age (example: 65.0)

color list (list) list of colors for plotting

job_str_list (list) list of string job descriptions corresponding to number of job levels

sdict (dictionary) program settings dictionary

attr_dict (dictionary) dataset column name description dictionary

ds_dict (dictionary) output of the load_datasets function, dictionary. This keyword
argument must be set if a string key is used as the df input.

plot_jobp (boolean) if measure input is ‘jnum’, also plot ‘jobp’ if set to True

show_implementation_date (boolean) if True and “xax” input is “date”, plot a verti-
cal line at the implementation date

chart_style (string) any seaborn plotting style name

linewidth (integer or float) width of chart solid lines

line_alpha (float) transparency value of the plotted lines (0.0 to 1.0)

grid_linestyle (string) matplotlib line style for grid, such as “dotted” or “solid”

grid_alpha transparency value for grid (0.0 to 1.0)

legend_size (integer or float) text size of chart legend

label_size (integer or float) font size of x and y axis labels

tick_size (integer or float) font size of chart tick labels

title_size (integer or float) font size of chart title

xsize, ysize (integer or float) plot size in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.numeric_test(value)
determine if a variable is numeric

returns a boolean value

input

322 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

value any variable

matplotlib_charting.parallel(df_list, dfb, eg_list, measure, month_list,
job_levels, eg_colors, dict_settings, attr_dict,
ds_dict=None, attr1=None, oper1='>=',
val1=0, attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=', val3=0, left=0,
stride_list=None, chart_style='whitegrid',
grid_color='.7', suptitle_size=14, title_size=12,
facecolor='w', xsize=6, ysize=8, im-
age_dir=None, image_format='png')

Compare positional or value differences for various proposals with a baseline position or
value for selected months.

The vertical lines represent different proposed lists, in the order from the df_list list input.

inputs

df_list (list) list of datasets to compare, may be ds_dict (output of load datasets func-
tion) string keys or dataframe variable(s) or mixture of each

dfb (string or variable) baseline dataset, accepts same input types as df_list above.
The order of the list is reflected in the chart x axis lables

eg_list (list) list of employee group integer codes to compare example: [1, 2]

measure (string) dataset attribute to compare

month_list (list) list of month numbers for analysis. the function will plot comparative
data from each month listed

job_levels (integer) number of job levels in data model

eg_colors (list) list of colors to represent the employee groups

dict_settings (dictionary) program settings dictionary generated by the
build_program_files script

attr_dict (dictionary) dataset column name description dictionary

ds_dict (dictionary) output from load_datasets function

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

left (integer) integer representing the list comparison to plot on left side of the chart(s).
zero (0) represents the standalone results and is the default. 1, 2, or 3 etc. represent
the first, second, third, etc. dataset results in df_list input order

323

seniority_list Documentation, Release 0.65

stride_list (list) optional list of dataframe strides for plotting every other nth result
(must be same length and correspond to eg_list)

grid_color (string) string name for horizontal grid color

facecolor (color value) chart background color

xsize, ysize (integer or float) size of individual subplots (width, height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.pct_format()
Apply “to_percent” custom format for chart tick labels

matplotlib_charting.percent_bins(eg, base, compare, measure='spcnt',
by_year=True, quantiles=20,
time_col='date', agg_method='median')

Return a tuple of two dataframes containing differential percentage bin counts, one contain-
ing positive counts and another containing negative counts.

This function first compares list percentage between two datasets on a grouped time period
basis (annual or monthly), then counts the number of employees within specified percentage
gain or loss quantiles.

The counts are returned in dataframes with indexes reflecting the quantiles and columns
representing the grouped time period.

This function is used in the percent_diff_bins plotting function.

inputs

eg (integer) employee group code

base (dataframe) baseline dataframe (dataset) containing a list percentage column

compare (dataframe) comparison dataframe (dataset) containing a list percentage
column

measure (string) dataset percentage attribute column (‘spcnt’ or ‘lspcnt’)

by_year (boolean) if True, group employee percentage differentials by year, other-
wise by time_col input

quantiles (integer) number of quantiles to measure. An input of 20 would translate to
quantiles of 5% each (100 / 20).

324 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

time_col (string) if by_year is False, group percentage differentials by this time unit.
Inputs may be “mnum” or “date”.

agg_method (string) quantile bin aggregation method. Inputs may be “mean” or “me-
dian”

matplotlib_charting.percent_diff_bins(compare, base, eg, mea-
sure='spcnt', kind='bar', quan-
tiles=40, num_display_colors=25,
area_xax='date', ds_dict=None,
attr1=None, oper1='>=', val1=0,
attr2=None, oper2='>=', val2=0,
attr3=None, oper3='>=',
val3=0, man_plotlim=None,
invert_barh=False,
chart_style='ticks',
cmap_pos='tab20c',
cmap_neg='tab20c',
zero_line_color='m',
bright_bg=False,
bg_color='#ffffe6', title_size=14,
legend_size=12.5, xsize=16,
ysize=10, image_dir=None,
image_format='png')

Display employee group counts within differential list percentage bins over time.

Chart style options include bar, barh, and area.

Selectable inputs include the number of percentile bins, chart colors and the number of colors
in the color cycle representing the bins.

The analysis groups may be targeted by up to three attribute value filters.

inputs

compare (dataframe) comparison dataframe (dateset)

base (dataframe) baseline dataframe (dataset)

eg (integer) employee group code

measure (string) list percentage attribute for comparison (‘spcnt’ or ‘lspcnt’)

kind (string) chart style (‘bar’, ‘barh’, or ‘area’)

quantiles (integer) the number of differential percentage bins. If the input is 40, each
bin width will be 2.5% (100 / 40)

num_display_colors (integer) the number of distinct colors to create from the cmap
inputs. If the input is less than the number of bins found for display, the colors
display will cycle or repeat as necessary.

325

seniority_list Documentation, Release 0.65

area_xax (string) attribute to use for the chart when the kind input is set to ‘area’.
Inputs may be ‘mnum’ or ‘date’.

ds_dict (dictionary) variable assigned to the output of the load_datasets function.
This keyword variable must be set if string dictionary keys are used as inputs for
the dfc and/or dfb inputs.

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

man_plotlim (integer) if not None, restrict chart differential axis to this value. Other-
wise, limit is set by an algorithm.

invert_barh (boolean) If ‘kind’ input is set to ‘barh’, if True, invert the chart y axis

chart_style (string) any valid seaborn plotting style name

cmap_pos (string) any matplotlib colormap name representing colors to be applied to
positive chart values

cmap_neg (string) any matplotlib colormap name representing colors to be applied to
negative chart values

zero_line_color (color value) color to be applied to the chart zero line

bright_bg (boolean) if True, color the chart background with the ‘bg_color’ color
value

bg_color (color value) color to use for the chart background if ‘bright_bg’ is True

title_size (integer or float) text size for the chart title

legend_size (integer or float) text size for the chart legend

xsize, ysize (integers or floats) Width and height of chart in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.pprint_dict(dct, marker1='#', marker2='',
skip_line=True)

print the key-value pairs in a horizontal, organized fashion.

inputs

326 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

dct (dictionary) the dictionary to print

marker1, marker2 prefix and suffix for the dictionary key headers

matplotlib_charting.quantile_bands_over_time(df, eg, mea-
sure, bins=20,
ds_dict=None,
year_clip=None,
kind='area', quan-
tile_ticks=False,
cm_name='tab20c',
chart_style='ticks',
quantile_alpha=0.75,
grid_alpha=0.4,
custom_start=0.0,
custom_finish=1.0,
alt_bg_color=False,
bg_color='#faf6eb',
legend_size=13,
label_size=13,
xsize=14, ysize=8,
image_dir=None,
image_format='png')

Visualize quantile distribution for an employee group over time for a selected proposal.

This chart answers the question of where the different employee groups will be positioned
within the seniority list for future months and years.

Note: this is not a comparative study. It is simply a presentation of resultant percentage
positioning.

The chart contains a background grid for reference and may display quantiles as integers or
percentages, using a bar or area type display, and includes several chart color options.

inputs

df (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

eg (integer) employee group number

measure (string) a list percentage input, either ‘spcnt’ or ‘lspcnt’

bins (integer) number of quantiles to calculate and display

ds_dict (dictionary) output from load_datasets function

year_clip (integer) maximum year to display on chart (requires ‘clip’ input to be
True)

kind (string) type of chart display, either ‘area’ or ‘bar’

327

seniority_list Documentation, Release 0.65

quantile_ticks (boolean) if True, display integers along y axis and in legend repre-
senting quantiles. Otherwise, present percentages.

cm_name (string) colormap name (string), example: ‘Set1’

chart_style (string) style for chart output, any valid seaborn plotting style name

quantile_alpha (float) alpha (opacity setting) value for quantile plot

grid_alpha (float) opacity setting for background grid

custom_start (float) custom colormap start level (a section of a standard colormap
may be used to create a custom color mapping)

custom_finish (float) custom colormap finish level

alt_bg_color (boolean) if True, set the background chart color to the bg_color input
value

bg_color (color value) color for chart background if ‘alt_bg_color’ is True (string)

legend_size (integer or float) text size for chart legend

label_size (intger or float) text size for chart x and y axis labels

xsize, ysize (integer or float) chart size inputs in inches (width, height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

328 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

matplotlib_charting.quantile_groupby(dataset_list, eg_list, measure,
quantiles, eg_colors, band_colors,
settings_dict, attr_dict, job_dict,
groupby_method='median',
xax='date', ds_dict=None,
num_cat_order_yticks=10,
through_date=None, ver-
bose_title=True, plot_total=True,
show_job_bands=True,
show_grid=True,
plot_implementation_date=True,
draw_reserve_levels=False, cus-
tom_color=False, cm_name='Set1',
start=0.0, stop=1.0, ex-
clude=None, reverse=False,
chart_style='whitegrid', re-
move_ax2_border=True,
line_width=1,
use_dashed_line_compare=True,
bg_color='.98',
job_bands_alpha=0.15,
line_alpha=0.7, grid_alpha=0.3,
title_size=14, tick_size=12, la-
bel_size=13, label_pad=110,
xsize=12, ysize=10, im-
age_dir=None, im-
age_format='png')

Plot representative values of a selected attribute measure for each employee group quantile
over time.

Multiple employee groups may be plotted at the same time. Job bands may be plotted
as a chart background to display job level progression when the measure input is set to
“cat_order”.

Two data models may be plotted and compared on the same chart. Only the first employee
group found within the eg_list input will be compared when plotting more than one dataset.

Example use case: plot the average job category rank of each employee quantile group, from
the start date though the life of the data model.

The quantile group attribute may be analyzed with any of the following methods:

[mean, median, first, last, min, max]

If the eg_list input list contains a single employee group code and the custom_color input is
set to “True”, the color of the plotted quantile result lines will be a spectrum of colors. The
following inputs are related to the custom color generation:

329

seniority_list Documentation, Release 0.65

[cm_name, start, stop, exclude, reverse]

The above inputs will be used by the make_color_list function located within this module to
produce a list of colors with a length equal to the quantiles input. (Please see the docstring
for the make_color_list function for further explaination). If the quantiles input is set to a
relatively high value (100-200), the impact on the career profiles of the employee groups is
easily discernible when using a qualitative color map.

inputs

dataset_list (dataframes) A list of long-form dataframes, each of which contains
“date” (and “mnum” if xax input is set to “mnum”) and “eg” columns and at least
one attribute column for analysis. The normal input is a list of calculated datasets
with many attribute columns. The list may only hold one or two datasets.

eg_list (list) List of eg (employee group) codes for analysis. The order of the employee
codes will determine the z-order of the plotted lines, last employee group plotted
on top of the others.

measure (string) Attribute column name

quantiles (integer) The number of quantiles to create and plot for each employee
group in the eg_list input.

eg_colors (list) list of color values for plotting the employee groups

band_colors (list) list of color values for plotting the background job level color bands
when the using a measure of ‘cat_order’ with the ‘show_job_bands’ variable set
to True

settings_dict (dictionary) program settings dictionary generated by the
build_program_files script

attr_dict (dictionary) dataset column name description dictionary

job_dict (dictionary) dictionary containing basic to enhanced job level conversion
data. This is likely the settings dictionary “jd” value.

groupby_method (string) The method applied to the attribute data within each quan-
tile. The allowable methods are listed in the description above. Default is ‘me-
dian’.

xax (string) The first groupby level and x axis value for the analysis. This value de-
faults to “date” which represents each month of the model. Alternatively, “mnum”
may be used.

ds_dict (dictionary) A dictionary containing string to dataframes, used if df input is
not a dataframe but a string key (examples: ‘standalone’, ‘p1’)

num_cat_order_yticks (int) approiximate number of y axis ticks to display on the
lefthand side of the chart when “cat_order” is selected as the “measure” input. The
actual number of ticks displayed will be adjusted to match an optimal numerical

330 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

interval between tick values. This input does not have a linear relationship with
the output and may require a significant input change to affect the chart display.

through_date (date string) If set as a date string, such as ‘2020-12-31’, only show
results up to and including this date.

verbose_title (boolean) If True, chart title will use the long descriptions for each
employee group from the settings.xlsx input file, proposal_dictionary worksheet.
Otherwise, the eg number codes will be used in the title

plot_total (boolean) If True, plot a dotted gray line representing the total count of
active pilots over time (only when “measure” input is set to “cat_order” and
“show_job_bands” input is True)

show_job_bands If measure is set to “cat_order”, plot properly scaled job level color
bands on chart background

show_grid (boolean) If True, plot a grid on the chart

plot_implementation_date If True and the xax argument is set to “date”, plot a dashed
vertical line at the implementation date.

draw_reserve_levels (boolean) If True and basic job levels have been selected via the
settings.xlsx “scalars” worksheet, “enhanced jobs” setting, draw a horizontal red
dashed line within each basic job category level representing the upper limit of
reserve status

custom_color (boolean) If set to True, will permit a custom color spectrum to be pro-
duced for plotting a single employee group “cat_order” result (color map is se-
lected with the cm_name input)

cm_name (string) The colormap name to be used for the custom color option

start (float) The starting point of the colormap to begin a custom color list generation
(0.0 to less than 1.0)

stop (float) The ending point of the colormap to finish a custom color list generation
(greater than 0.0 to 1.0)

exclude (list) A list of 2 floats between 0.0 and 1.0 describing a section of the original
colormap to exclude from a custom color list generation. (Example [.45, .55], the
middle of the list excluded)

reverse (boolean) If True, reverse the sequence of the custom color list

chart_style (string) set the chart plot style for ax1 from the avialable seaborn plotting
themes:

[“darkgrid”, “whitegrid”, “dark”, “white”, and “ticks”]

The default is “whitegrid”.

331

seniority_list Documentation, Release 0.65

remove_ax2_border (boolean) if “cat_order” is set as the measure input and the
show_job_bands input is set True, a second axis is generated to be the container for
the job level labels. The chart style for ax2 is “white” which avoids unwanted grid
lines but includes a black solid chart border by default. This ax2 border may be
removed if this input is set to True. (The border may be displayed if the chart_style
input (for ax1) is set to “white” or “ticks”).

line_width (float) The width of the plotted lines. Default is .75

use_dashed_line_compare (boolean) If True, when comparing output from 2
datasets, plot the second dataset output with a dashed line, otherwise use a solid
line

bg_color (color value) The background color for the chart. May be a color name,
color abreviation, hex value, or decimal between 0 and 1 (shades of black)

job_bands_alpha (float) If show_job_bands input is set to True and measure is set to
“cat_order”, this input controls the alpha or transparency of the background job
level bands. (0.0 to 1.0)

line_alpha (float) Transparency value of plotted lines (0.0 to 1.0)

grid_alpha (float) Transparency value of grid lines (0.0 to 1.0)

title_size (integer or float) Font size value for title

tick_size (integer or float) Font size value for chart tick (value) labels

label_size (integer or float) Font size value for x and y unit labels

xsize, ysize (integers or floats) Width and height of chart in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

332 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

matplotlib_charting.quantile_years_in_position(dfc, dfb, job_levels,
num_bins,
job_str_list,
p_dict, color_list,
style='bar',
plot_differential=True,
ds_dict=None,
attr1=None,
oper1='>=',
val1=0, attr2=None,
oper2='>=',
val2=0, attr3=None,
oper3='>=', val3=0,
chart_style='darkgrid',
grid_alpha=None,
cus-
tom_color=False,
cm_name='Dark2',
start=0.0, stop=1.0,
fur_color=None,
flip_x=False,
flip_y=False,
rotate=False,
gain_loss_bg=False,
bg_alpha=0.05,
normal-
ize_yr_scale=False,
year_clip=30,
suptitle_size=14,
title_size=12,
xsize=12,
ysize=12, im-
age_dir=None, im-
age_format='png')

stacked bar or area chart presenting the time spent in the various job levels for quantiles of a
selected employee group.

inputs

dfc (string or dataframe variable) text name of proposal (comparison) dataset to ex-
plore (ds_dict key) or dataframe

dfb (string or dataframe variable) text name of baseline dataset to explore (ds_dict
key) or dataframe

job_levels (integer) the number of job levels in the model

333

seniority_list Documentation, Release 0.65

num_bins (integer) the total number of segments (divisions of the population) to cal-
culate and display

job_str_list (list) a list of strings which correspond with the job levels, used for the
chart legend example: jobs = [‘Capt G4’, ‘Capt G3’, ‘Capt G2’,]

p_dict (dictionary) dictionary used to convert employee group numbers to text, used
with chart title text display

color_list (list) a list of color codes for the job level color display

style (string) option to select ‘area’ or ‘bar’ to determine the type of chart output.
default is ‘bar’.

plot_differential (boolean) if True, plot the difference between dfc and dfb values

ds_dict (dictionary) variable assigned to the output of the load_datasets function.
This keyword variable must be set if string dictionary keys are used as inputs for
the dfc and/or dfb inputs.

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

chart_style (string) any valid seaborn plotting style name

custom_color, cm_name, start, stop (boolean, string, float, float) if custom color is
set to True, create a custom color map from the cm_name color map style. A
portion of the color map may be selected for customization using the start and stop
inputs.

fur_color (color code in rgba, hex, or string style) custom color to signify fur-
loughed employees (otherwise, last color in color_list input will be used)

flip_x (boolean) ‘flip’ the chart horizontally if True

flip_y (boolean) ‘flip’ the chart vertically if True

rotate (boolean) transpose the chart output

gain_loss_bg (boolean) if True, apply a green and red background to the chart in the
gain and loss areas

bg_alpha (float) the alpha of the gain_loss_bg (if selected)

normalize_yr_scale (boolean) set all output charts to have the same x axis range

yr_clip (integer) max x axis value (years) if normalize_yr_scale set True

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) text size of chart title

334 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

xsize, ysize (integer or float) size of chart display

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples: ‘svg’, ‘png’

matplotlib_charting.rows_of_color(df, mnum, measure_list, eg_colors,
jnum_colors, dict_settings,
ds_dict=None, attr1=None,
oper1='>=', val1=0, attr2=None,
oper2='>=', val2=0, attr3=None,
oper3='>=', val3=0, cols=150,
eg_list=None, job_only=False, jnum=1,
shrink_to_fit=False, cell_border=True,
eg_border_color='.2',
job_border_color='.2',
chart_style='whitegrid',
fur_color=None,
empty_color='#737373', supti-
tle_size=14, title_size=12, leg-
end_size=14, xsize=15, ysize=9,
image_dir=None, image_format='png')

plot a heatmap with the color of each rectangle representing an employee group, job level,
or status.

This chart will show a position snapshot indicating the distribution of employees within the
entire population, employees holding a certain job, or a combination of the two.

For example, all employees holding a certain job in month 36 may be plotted with original
group delineated by color. Or, all employees from one group may be shown with the different
jobs for that group displayed with different colors.

Also will display any other category such as a special group such as furloughed employ-
ees. Input dataframe must have a numerical representation of the selected measure, i.e.
furloughed indicated by a 1, and others with a 0.

inputs

df (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

mnum (integer) month number of dataset to analyze

measure_list (list) list form input, ‘categorical’ only such as employee group number
or job number, such as [‘jnum’], or [‘eg’] [‘eg’, ‘fur’] is also valid when highlight-
ing furloughees

335

seniority_list Documentation, Release 0.65

eg_colors (list) colors to use for plotting the employee groups. the first color in the
list is used for the plot ‘background’ and is not an employee group color

jnum_colors (list) job level plotting colors, list form

ds_dict (dictionary) output from load_datasets function

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

cols (integer) number of columns to construct for the heatmap plot

eg_list (list) employee group integer code list (if used), example: [1, 2]

job_only (boolean) if True, plot only employees holding the job level identified with
the jnum input

jnum (integer) job level distribution to plot if job_only input is True

shrink_to_fit (boolean) if True, adjust the size of the heatmap to match the size of the
filtered monthly data. If False, maintain the number of cells in the heatmap to be
equal to the starting size of the employee population

cell_border (boolean) if True, show a border around the heatmap cells

eg_border_color (color value) color of cell border if measure_list includes ‘eg’ (em-
ployee group)

job_border_color (color value) color of cell border when plotting job information

chart_style (string) underlying chart style, any valid seaborn chart style (string)

fur_color (color code in rgba, hex, or string style) custom color to signify fur-
loughed employees (otherwise, last color in jnum_colors input will be used)

empty_color (color value) cell color for cells with no data

suptitle_size (integer or float) text size of chart super title

title_size (integer or float) text size of chart title

legend_size (integer or float) text size of chart legend

xsize, ysize (integer or float) size of chart in inches (width, height)

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

336 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

‘svg’, ‘png’

matplotlib_charting.single_emp_compare(emp, measure, df_list,
xax, job_strs, eg_colors,
p_dict, job_levels,
attr_dict, ds_dict=None,
chart_style='whitegrid', stan-
dalone_color='#ff00ff', ti-
tle_size=14, tick_size=12,
label_size=13, leg-
end_size=14, xsize=12,
ysize=8, image_dir=None,
image_format='png')

Select a single employee and compare proposal outcome using various calculated measures.

inputs

emp (integer) empkey for selected employee

measure (string) calculated measure to compare examples: ‘jobp’ or ‘cpay’

df_list (list) list of calculated datasets to compare

xax (string) dataset column to set as x axis

job_strs (list) string job description list

eg_colors (list) list of colors to be assigned to line plots

p_dict (dictionary) dictionary containing eg group integer to eg string descriptions

job_levels (integer) number of jobs in the model

attr_dict (dictionary) dataset column name description dictionary

ds_dict (dictionary) output from load_datasets function

chart_style (string) any valid seaborn plotting style

standalone_color (color value) color of standalone plot (This function assumes one
proposal from each group, any additional proposal is assumed to be standalone)

title_size (integer or float) text size of chart title

tick_size (integer or float) text size of chart tick labels

label_size (integer or float) text size of x and y axis chart labels

legend_size (integer or float) text size of chart legend

xsize, ysize (integer or float) width and height of output chart in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

337

seniority_list Documentation, Release 0.65

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.slice_ds_by_filtered_index(df, ds_dict=None,
mnum=0, attr='age',
attr_oper='>=',
attr_val=50)

filter an entire dataframe by only selecting rows which match the filtered results from a target
month. In other words, zero in on a slice of data from a particular month, such as employees
holding a specific job in month 25. Then, using the index of those results, find only those
employees within the entire dataset as an input for further analysis within the program.

The output may be used as an input to a plotting function or for other analysis. This function
may also be used repeatedly with various filters, using output of one execution as input for
another execution.

inputs

df (dataframe, can be proposal string name) the dataframe (dataset) to be filtered

ds_dict (dictionary) A dictionary containing string to dataframes, used if ds_def input
is not a dataframe

mnum (integer) month number of the data to filter

attr (string) attribute (column) to use during filter

oper (string) operator to use, such as ‘<=’ or ‘!=’

attr_val (integer, float, date as string, string (as appropriate)) attr1 limiting value
(combined with oper) as string

Example filter: jnum >= 7 (in mnum month)

338 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

matplotlib_charting.stripplot_dist_in_category(df, job_levels,
full_time_pcnt,
eg_colors,
band_colors,
job_strs,
attr_dict, p_dict,
ds_dict=None,
rank_metric='cat_order',
mnum=None,
attr1=None,
oper1='>=',
val1='0',
attr2=None,
oper2='>=',
val2='0',
attr3=None,
oper3='>=',
val3='0',
bg_alpha=0.12,
fur_color=None,
show_part_time_lvl=True,
size=3, alpha=1,
title_size=14, la-
bel_pad=110,
label_size=13,
tick_size=12,
xsize=4,
ysize=12, im-
age_dir=None, im-
age_format='png')

visually display employee group distribution concentration within accurately sized job bands
for a selected month.

This chart reveals how evenly or unevenly the employee groups share the jobs available
within each job category.

inputs

df (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

job_levels (integer) number of job levels in the data model

full_time_pcnt (float) percentage of each job level which is full time

eg_colors (list) list of colors for eg plots

band_colors (list) list of colors for background job band colors

339

seniority_list Documentation, Release 0.65

job_strs (list) list of job strings for job description labels

attr_dict (dictionary) dataset column name description dictionary

p_dict (dictionary) eg to group string label

ds_dict (dictionary) output from load_datasets function

rank_metric (string) rank attribute (currently only accepts ‘cat_order’)

mnum (integer) month number - if not None, analyze data from this month

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

bg_alpha (float) color alpha for background job level color

fur_color (color code in rgba, hex, or string style) custom color to signify fur-
loughed job band area (otherwise, last color from band_colors list will be used)

show_part_time_lvl (boolean) if True, draw a line within each job band representing
the boundry between full and part-time jobs when using a basic jobs only data
model (set this input to False when using an enhanced job data model)

size (integer or float) size of density markers

alpha (float) alpha of density markers (0.0 to 1.0)

title_size (integer or float) text size of chart title

label_size (integer or float) text size of x and y descriptive labels

tick_size (integer or float) text size of x and y tick labels

xsize, ysize (integer or float) width and height of chart in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

340 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

matplotlib_charting.stripplot_eg_density(df, mnum, eg_colors,
ds_dict=None,
mnum_order=True,
attr1=None, oper1='>=',
val1=0, attr2=None,
oper2='>=', val2=0,
attr3=None, oper3='>=',
val3=0, dot_size=3,
chart_style='whitegrid',
bg_color='white', ti-
tle_size=12, suptitle_size=14,
xsize=5, ysize=10, im-
age_dir=None, im-
age_format='png')

plot a stripplot showing density distribution for non-retired employees for each employee
group separately at the selected month. The stripplot displays remaining employees posi-
tioned according to the selected month or initial month integrated list order (controlled by
the “mnum_order” input).

Note: To analyze job category distribution density, use the “stripplot_dist_in_category” plot-
ting function.

The input dataframe (df) may be a dictionary key (string) or a pandas dataframe.

The input dataframe may be filtered by attributes using the attr(x), oper(x), and val(x) inputs.

inputs

df (string or dataframe) text name of input proposal dataset, also will accept any
dataframe variable (if a sliced dataframe subset is desired, for example) Example:
input can be ‘proposal1’ (if that proposal exists, of course, or could be df[df.age >
50])

mnum (integer) view data for employees remaining (not yet retired) within this data
model month number

eg_colors (list) color codes for plotting each employee group

ds_dict (dictionary) output from load_datasets function

mnum_order (boolean) if True, plot list position in month selected with the “mnum”
input, otherwise plot according to initial integrated list position

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (integer, float, date as string, string (as appropriate)) attr(n) limiting value
(combined with oper(n)) as string

dot_size (integer or float) size of stripplot markers

341

seniority_list Documentation, Release 0.65

bg_color (color value) chart background color

title_size (integer or float) chart title text size

suptitle_size (integer or float) chart text size of suptitle

xsize, ysize (integer or float) size of chart width and height in inches

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

matplotlib_charting.to_percent(decimal, position, precision=0)
Custom format for matplotlib axis as a percentage.

Ignores the passed in position variable. This has the effect of scaling the default tick loca-
tions.

inputs

decimal (axis values) no user input

position ignored

precision (integer) number of decimals in output percentage labels

matplotlib_charting.violinplot_by_eg(df, measure, ret_age, cdict,
attr_dict, ds_dict=None,
mnum=0, linewidth=1.5,
attr1=None, oper1='>=',
val1='0', attr2=None, oper2='>=',
val2='0', attr3=None, oper3='>=',
val3='0', scale='count', sat-
uration=1.0, title_size=12,
chart_style='darkgrid', xsize=12,
ysize=10, image_dir=None, im-
age_format='png')

From the seaborn website: Draw a combination of boxplot and kernel density estimate.

A violin plot plays a similar role as a box and whisker plot. It shows the distribution of quan-
titative data across several levels of one (or more) categorical variables such that those distri-
butions can be compared. Unlike a box plot, in which all of the plot components correspond
to actual datapoints, the violin plot features a kernel density estimation of the underlying
distribution.

inputs

342 Chapter 14. matplotlib_charting module

seniority_list Documentation, Release 0.65

df (dataframe) dataset to examine, may be a dataframe variable or a string key from
the ds_dict dictionary object

measure (string) attribute to plot

ret_age (float) retirement age (example: 65.0)

cdict (dictionary) color dictionary for plotting palatte

attr_dict (dictionary) dataset column name description dictionary

ds_dict (dictionary) output from load_datasets function

mnum (integer) month number to analyze

linewidth (integer or float) width of line surrounding each violin plot

attr(n) (string) filter attribute or dataset column as string

oper(n) (string) operator (i.e. <, >, ==, etc.) for attr(n) as string

val(n) (string, integer, float, date as string as appropriate) attr(n) limiting value
(combined with oper(n)) as string

scale (string) From the seaborn website: The method used to scale the width of each
violin. If ‘area’, each violin will have the same area. If ‘count’, the width of the
violins will be scaled by the number of observations in that bin. If ‘width’, each
violin will have the same width.

saturation (float) Proportion of the original color saturation. Large patches often look
better with slightly desaturated colors, but set this to 1.0 if you want the plot colors
to perfectly match the input color spec.

title_size (integer or float) text size of chart title

image_dir (string) if not None, name of a directory in which to save an image of the
chart output. If the directory does not exist, it will be created.

image_format (string) file extension string for a saved chart image if the image_dir
input is not None

Examples:

‘svg’, ‘png’

343

seniority_list Documentation, Release 0.65

344 Chapter 14. matplotlib_charting module

CHAPTER

FIFTEEN

REPORTS MODULE

reports.annual_charts(ds_dict, adict, cdict, plot_year_group=True,
plot_job_group=True, quantiles=10,
plot_init_quarter=True, plot_running_quarter=True,
pcnt_ylim=0.75, cpay_stride=500,
fixed_col_name='eg_initQ', run-
ning_col_name='eg_runQ', figsize=None,
date_grouper='ldate', chartstyle='ticks', ver-
bose_status=True, tick_size=13, legend_size=14, la-
bel_size=14, title_size=14, adjust_chart_top=0.85)

Generates multiple charts representing general annual attribute statistics of all calculated
datasets for all employee groups FOR ALL ACTIVE EMPLOYEES (annual results for all
employees).

The user may select grouping analysis by any or all of the following:

1. longevity or date of hire year

2. job level

3. initial employee group list quantile membership

4. annual employee group list quantile membership

Stores the output as images in multiple folders within the reports/<case_name>/ann_charts
folder.

inputs

ds_dict (dictionary) output of load_datasets function, a dictionary of datasets

adict (dictionary) dataset column name description dictionary

cdict (dictionary) program colors dictionary

plot_year_group (boolean) if True, create chart images grouped by the date_grouper
input year

345

seniority_list Documentation, Release 0.65

date_grouper (string) column name representing a column of dates within a
dataframe. Year membership of this column will be used for grouping. Input
is limited to ‘ldate’ or ‘doh’.

plot_job_group (boolean) if True, create chart images grouped by job level held by
employees

quantiles (integer) the number of binning quantiles to measure for the initial and run-
ning (annually updated) quantile membership analysis (default is 10)

plot_init_quarter (boolean) if True, produce output grouped by initial list quantile
membership, for each employee group

plot_running_quarter (boolean) if True, produce output grouped by annual list
quantile membership, for each employee group

pcnt_ylim (float) output chart maximum y axis value for percentage attribute charts
as a float, example: .75 equals max displayed chart value of 75%

cpay_stride (integer) y axis chart tick interval (in thousands) for charts displaying
cpay (career pay)

fixed_col_name (string) label to use for quantile number column when calculating
using the initial quantile membership for all results

running_col_name (string) label to use for quantile number column when calculating
using a continuously updated quantile membership for all results

figsize (tuple) optional size of all generated chart images. Default is None. This input
will allow creation of larger chart images than the default small charts, at the price
of an increase in the time required to run the function.

date_grouper (string) ‘ldate’ or ‘doh’ date column grouping attribute used when
plot_year_group input is True

chartstyle (string) any valid seaborn charting style (‘ticks’, ‘dark’, ‘white’, ‘dark-
grid’, ‘whitegrid’), defalut is ‘ticks’

verbose_status (boolean) if True, print status of calculations as function is running

tick_size (integer or float) text size of tick labels on the output chart images

legend_size (integer or float) text size of the legend on the output chart images

label_size (integer or float) text size of the x and y axis labels on the output chart
images

title_size (integer or float) text size of the title on the output chart images

adjust_chart_top (float) input to permit adjustment of the top location of the gener-
ated charts - used to ensure full chart title is captured by the save chart figure code.
Defalt top position is 1.0, default vaule for this input is .85 which “shrinks” the

346 Chapter 15. reports module

seniority_list Documentation, Release 0.65

charts slightly vertically so that the two-line chart titles are captured when saving
the charts to file as images.

reports.job_diff_to_excel(base_ds, compare_ds, ds_dict, add_cpay=True,
diff_color=True, row_color=True,
lighten_factor=0.65, neg_color='red',
pos_color='blue', zero_color='white',
id_cols=['lname', 'ldate', 'retdate'])

Generates a spreadsheet which reports the differential number of months spent at each job
level between two outcome datasets. Results are reported for every employee.

The order of the employees shown will be the order from the “compare” dataset input.

The user may choose to apply formatting to the output spreadsheet. The generation of the
output with formatting is much slower than without, however.

Stores the output within the reports/<case_name>/by_employee folder.

inputs

base_ds (dataframe) baseline dataset

compare_ds (dataframe) comparison dataset

add_cpay (boolean) if True, add a “cpay_diff” column to show data model pay dif-
ferential (compare vs. base)

diff_color (boolean) if True, use the neg_color, pos_color, and zero_color inputs to
color the spreadsheet job differential output

row_color (boolean) color spreadsheet rows by employee group if True. Color will
be a tint (lighter color version) of the colors used to represent the employee groups
in chart output.

lighten_factor (float) when the “row_color” input is True, this input controls the tint
of the normal employee group colors to use for the cell background row coloring.
The input is limited from 0.0 to 1.0 and a higher value will make the coloring
lighter.

neg_color, pos_color, zero_color (color values) this input will determine the font
colors to use for negative, positive, and zero job differential values within the
spreadsheet output. Inputs may by string hex values, or rgb values within tuples or
lists

id_cols (list) list of columns to include within the spreadsheet output which are in ad-
dition to the job level columns. This list (with the addition of the “order” column)
will also be colored according to employee group when the “row_color” input is
set to True.

347

seniority_list Documentation, Release 0.65

reports.retirement_charts(ds_dict, adict, cdict, plot_year_group=True,
date_grouper='ldate', plot_job_group=True,
plot_init_quarter=True,
plot_running_quarter=True, quan-
tiles=10, pcnt_ylim=0.75, cpay_stride=500,
fixed_col_name='eg_initQ', run-
ning_col_name='eg_runQ', figsize=None, chart-
style='ticks', verbose_status=True, tick_size=13,
legend_size=14, label_size=14, title_size=14,
adjust_chart_top=0.85)

Generates multiple charts representing general attribute statistics of all calculated datasets
for all employee groups AT RETIREMENT ONLY.

The user may select grouping analysis by any or all of the following:

1. longevity or date of hire year

2. job level

3. initial employee group list quantile membership

4. annual employee group list quantile membership

Stores the output as images in multiple folders within the reports/<case_name>/ret_charts
folder.

inputs

ds_dict (dictionary) output of load_datasets function, a dictionary of datasets

adict (dictionary) dataset column name description dictionary

cdict (dictionary) program colors dictionary

plot_year_group (boolean) if True, create chart images grouped by the date_grouper
input year

date_grouper (string) column name representing a column of dates within a
dataframe. Year membership of this column will be used for grouping. Input
is limited to ‘ldate’ or ‘doh’.

plot_job_group (boolean) if True, create chart images grouped by job level held by
employees

quantiles (integer) the number of binning quantiles to measure for the initial and run-
ning (annually updated) quantile membership analysis (default is 10)

plot_init_quarter (boolean) if True, produce output grouped by initial list quantile
membership, for each employee group

plot_running_quarter (boolean) if True, produce output grouped by annual list
quantile membership, for each employee group

348 Chapter 15. reports module

seniority_list Documentation, Release 0.65

pcnt_ylim (float) output chart maximum y axis value for percentage attribute charts
as a float, example: .75 equals max displayed chart value of 75%

cpay_stride (integer) y axis chart tick interval (in thousands) for charts displaying
cpay (career pay)

fixed_col_name (string) label to use for quantile number column when calculating
using the initial quantile membership for all results

running_col_name (string) label to use for quantile number column when calculating
using a continuously updated quantile membership for all results

figsize (tuple) optional size of all generated chart images. Default is None. This input
will allow creation of larger chart images than the default small charts, at the price
of an increase in the time required to run the function.

date_grouper (string) ‘ldate’ or ‘doh’ date column grouping attribute used when
plot_year_group input is True

chartstyle (string) any valid seaborn charting style (‘ticks’, ‘dark’, ‘white’, ‘dark-
grid’, ‘whitegrid’), defalut is ‘ticks’

verbose_status (boolean) if True, print status of calculations as function is running

tick_size (integer or float) text size of tick labels on the output chart images

legend_size (integer or float) text size of the legend on the output chart images

label_size (integer or float) text size of the x and y axis labels on the output chart
images

title_size (integer or float) text size of the title on the output chart images

adjust_chart_top (float) input to permit adjustment of the top location of the gener-
ated charts - used to ensure full chart title is captured by the save chart figure code.
Defalt top position is 1.0, default vaule for this input is .85 which “shrinks” the
charts slightly vertically so that the two-line chart titles are captured when saving
the charts to file as images.

reports.stats_to_excel(ds_dict, quantiles=10, date_grouper='ldate',
fixed_col_name='eg_initQ', run-
ning_col_name='eg_runQ')

Create a set of basic statistics for each calculated dataset and write the results as spreadsheets
within the reports folder.

There are 2 spreadsheets produced, one related to retirement data and the other related to
annual data.annual

The retirement information is grouped by employees retiring in future years, further grouped
for longevity or initial job.

The annual information is grouped by the model year, and further grouped by 10% quan-
tiles, either by initial quantile membership or by an annual quantile adjustment of remaining

349

seniority_list Documentation, Release 0.65

employees.

inputs

ds_dict (dictionary) output of load_datasets function, a dictionary of datasets

quantiles (integer) the number of binning quantiles to measure for the initial and run-
ning (annually updated) quantile membership analysis (default is 10)

date_grouper (string) column name representing a column of dates within a
dataframe. Year membership of this column will be used for grouping. Input
is limited to ‘ldate’ or ‘doh’.

fixed_col_name (string) label to use for quantile number column when calculating
using the initial quantile membership for all results

running_col_name (string) label to use for quantile number column when calculating
using a continuously updated quantile membership for all results

350 Chapter 15. reports module

CHAPTER

SIXTEEN

CHANGE LOG

16.1 version history

16.1.1 0.65

May 12th, 2020

This version updates seniority_list to be compatible with changes in some of the sup-
porting Python data science packages which have reached 1.0 release status since this
program was developed.

• update rquirements.txt

• modify the update_stripplot function within editior_function.py to restore cor-
rect display of the scatter density plot within the EDITOR_TOOL.ipynb note-
book

• modify the layout parameters for the editor tool due to changes within bokeh

• slight change to the align_next function for changes within the numba package
and rewrite docstring

• update job_count_charts plotting function to be compatible with how matplotlib
handles empty groupby groups

• update eg_attributes plotting function to allow for new matplotlib datetime axis
handling

• update bk_basic_interactive interactive plotting function due to different way
that widgets are defined with bokeh since 1.0

351

seniority_list Documentation, Release 0.65

16.1.2 0.64

March 1st, 2020

Minor update to fix broken links in documentation.

16.1.3 0.63

October 8th, 2018

This version adds functionality within many of the scripts and plotting functions, up-
dates the plotting functions for compatibility with matplotlib 3.0, adjusts the editor
tool code for compatibility with the bokeh plotting library, and corrects a few bugs.

Script and non-plotting functions updates:

• modify build_program_files.py script to allow edited list order from propos-
als.xlsx to be constructed properly with a “new_order” column vs an “idx” col-
umn

• modify compute_measures.py script to accept edited proposal orderings from
proposals.xlsx

• update reports.py script functions retirement_charts and annual_charts to be
compatible with matplotlib 2.2 (this prevents the previous behavior of automatic
plotting of the final calculated charts within jupyter notebook)

• corrected bug in build_program_files.py script when using basic jobs (non-
enhanced)

• update comment cells in RUN_SCRIPTS.ipynb notebook

• update the anon_master and anon_pay_table functions (in the functions module)
to use the “sheet_name” keyword parameter with pandas read_excel functions.
this is due to a revision within pandas

• add docstring to hex_dict function

• remove ipywidgets from program requirements

Plotting function updates:

• improve quantile_groupby plotting function. Now two datasets may be compared
for the same employee group. Update STATIC_PLOTTING.ipynb notebook
with correct variable inputs and new plotting example. Add chart example to
documentation gallery.

• update stripplot_eg_density plotting function (removed “attr_dict” input and im-
proved chart title labels)

352 Chapter 16. change log

seniority_list Documentation, Release 0.65

• update quantile_groupby plotting function (add “verbose_title option, add
“plot_total” option, correct bug when “through_date” input was greater than
maximum data model date)

• update job_transfer plotting function so that title shows verbose employee group
name instead of an employee group code number

• update stripplot_eg_density plotting function to permit display of list order rela-
tive to selected month order or initial integrated list order and also improve the
chart labels

• enhance title display in the quantile_years_in_position plotting function

• add code to handle situation when filtering results are an empty dataset in the
differential_scatter plotting function

• update quantile_groupby plotting function to include auto-yscale tick spacing
when “cat_order” is selected for the “measure” input. This prevents the plotting
library from picking random tick spacing.

Editor tool updates:

• update animate function callbacks within the editor_function to align with
change in bokeh api version 0.12.16+

• adjust height of bokeh textinput widget within the editor_function.py module
to less than optimal height to maintain usability. The bokeh textinput widget is
missing functionality for proper sizing. When the functionality is implemented,
the txt_height variable will be readjusted.

• remove the global variable from callbacks within the editor_function and the
bk_basic_interactive function and replace with a new class object

• update editor tool layout spacers

• refactor editor tool periodic_callback code for compatibiltiy with bokeh update

16.1.4 0.62

April 18th, 2018

This a minor update with changes for compatibility with matplotlib 2.2 and minor code
tweaks to allow a wider range of user scenarios.

• change references to “Vega20c” matplotlib colormap to “tab20c”

• change matplotlib tick parameters from “on” and “off” to “True” and “False”

• add ax.margins(x=0) to plotting code where needed

• update build_program_files.py to allow cases without any furloughed employ-
ees

16.1. version history 353

seniority_list Documentation, Release 0.65

• update contract_year_and_raise function to allow compenstation data without
any pay exceptions

• update distribute function

• update group_average_and_median plotting function to permit proper plotting
when default job level scaling interval is less than one

16.1.5 0.61

February 26th, 2018

This update refactored the job assignment routine used when a ratio condition is ap-
plied, added a time in job differential study to the reports module, and applied mis-
cellaneous code and docstring cleanup.

Users may elect to capture an existing job distribution ratio (between the employee
groups) to be applied during the effective condition time period for both capped and
unrestricted ratio job assignment. The input spreadsheet settings.xlsx “ratio cond”
and “ratio_cond_capped_count” worksheets now contain an additional column (“snap-
shot”) for selecting this option. The “excel input files” section of the documentation
has been updated. Code changes related to the new ratio job assignment routine:

• update set_snapshot_weights function

• update assign_cond_ratio function

• update distribute function

• remove assign_cond_ratio_capped function

• add eg_quotas function

• update build_program_files script

• update converter script

• refactor remove_zero_groups function

This version adds to the built-in reporting capability of seniority_list with the new
job_diff_to_excel function. The function will calculate the time difference (in months)
each employee would spend in each job level between data models. The results are
presented as a formatted spreadsheet stored within the reports folder. The hex_dict
function was added to support the formatting requirements for the spreadsheet output.

The NumPy “in1d” function has been replaced with the NumPy “isin” function
throughout as recommended by NumPy124.

Hard code used during development was removed/updated within the violinplot_by_eg
and the eg_multiplot_with_cat_order functions.

124 https://docs.scipy.org/doc/numpy/reference/generated/numpy.in1d.html

354 Chapter 16. change log

https://docs.scipy.org/doc/numpy/reference/generated/numpy.in1d.html

seniority_list Documentation, Release 0.65

Some formatting of function docstrings was updated to improve the output format of
the web and pdf documentation.

16.1.6 0.60

January 12th, 2018

The documentation has now been updated for the new editor tool and the old version
of the editor has been removed.

A new interactive_plotting.py module has been added to the program, along with a
companion INTERACTIVE_PLOTTING.ipynb notebook file. Only one interactive
chart is included at this point.

Revision highlights include:

• the editor zone delineation for each chart area has been changed from a bokeh
rect glyph to a box annotation. The vertical spread of the zone will now alway
extend to the limits of the chart areas

• a correction was made to the edit zone cursor line conversion calculation when
using a “running” xtype x axis

• the “proposal” dropdown selection on the “proposal_save” panel will now auto-
matically change to “edit” when a squeeze is performed

• added styling control for the edit zone

• added code to handle data model months with no data when extra filters have
been applied

• renamed the PLOTTING notebook to STATIC_PLOTTING to accomodate the
new INTERACTIVE_PLOTTING notebook

16.1.7 0.59

December 23rd, 2017

The editor tool has been completely rewritten and is now implemented as a local web
server application within the notebook using the Bokeh plotting library. This first
release version is now included with the program but is not yet supported with docu-
mentation. A revised user guide will be forthcoming soon. The documentation related
to the editor tool will be incrementally revised over the next several weeks. Much of
the current documention can be applied to the new tool.

Other improvements with this revision include:

• updated assign_standalone_job_changes function

16.1. version history 355

seniority_list Documentation, Release 0.65

• fixed old editor tool display functionality following ipywidgets update, though
performance when using the cursor sliders is less than ideal

• changed all pandas “read_excel” parameters from “sheetname” to “sheet_name”
for compatibility with future versions of pandas

• added editor_dict to the build_program_files.py script which provides initial val-
ues for the new editor tool display and will store editor tool values during and
between sessions

• added convert_to_hex function which converts rgba values (such as those pro-
duced by the make_color_list function) to string hex color values

• added the find_nearest and cross_val functions for use with the editor tool p1 and
p2 cursor equivalent position feature (p1 and p2 are the bokeh chart figures)

16.1.8 0.58

September 25th, 2017

This update includes coding updates which improve the computational efficiency of
the program, resulting in a 10-15% reduction in the time required to compute a dataset.

• General changes were made through entire code base to increase computational
speed wherever possible:

– numpy.arange() to range()

– numpy.sum(<condition>) to numpy.count_nonzero(<condition>)

– numpy.array(dataframe_column) to dataframe_column.values

– max(array) to array.max()

• Applied fast numba jit (just in time compiling) to the following refactored func-
tions:

– align_next

– mark_fur_range

• Replaced standard numpy expressions used for job counting and job count col-
umn assignment with two new numba-optimized functions:

– count_avail_jobs

– assign_job_counts*

• Improved the performance of the following functions through the use of line
profiling and refactoring:

– career_months

356 Chapter 16. change log

seniority_list Documentation, Release 0.65

– convert_to_datetime

– count_per_month

– gen_skel_emp_idx

– age_correction

• Updated the standalone.py script to use the create_snum_and_spcnt_arrays
function for faster generation of the snum, spcnt, lnum, and lscpnt columns.

Other improvements were made to the program which are not related to reducing com-
putation time:

• Added the find_squeeze_vals function and incorporated it within the editor tool.
The new function permits editor squeezing (a visual exercise based on displayed
data) when future month data is displayed to the user. Future month cursor line
postion is converted to the equivalent original list positions for use within the
squeeze algorithm.

• Added an experimental section to the job_time_change plotting function. The
PLOTTING notebook was updated accordingly.

• Removed the no longer used “orig” output from assign_jobs_nbnf_job_changes
function.

• Changed code reference from “qtr” to the semantically correct “qntl” for use
within the summary reports charts output.

• Restored “full_flush” job assignement functionality with updates to the as-
sign_jobs_full_flush_job_changes function.

• Added a sort routine to the eg_count settings dictionary value creation routine
within the build_program_files script to ensure continuity with other program
calculations.

• Removed functions which have been superceded and are no longer used:

– snum_and_spcnt

– create_snum_array

16.1.9 0.57

August 23rd, 2017

This update includes a major editor tool upgrade.

• added editor tool absolute value display

Previously, only a differential comparison of attribute values between a
baseline and comparative dataset was possible. Now the actual values,

16.1. version history 357

seniority_list Documentation, Release 0.65

initially from the comparative and then the edited dataset (after the first
edit), may be displayed. This option allows the user to directly analyze
the distribution of equity and opportunity within the merged operation
of integration proposals.

• added editor tool additional display filtering

The user may now show only results for targeted subsets of the merged
population, allowing rapid analysis of certain list attribute cohorts. For
example, this feature permits additional outcome evaluation for employ-
ees who may have limited years remaining in their careers or employees
belonging to a special job assignment category.

• extensive updates to the editor tool documentation and the editor tool function
docstring

• updeated EDITOR_TOOL notebook to incorporate the new editor tool function-
ality

• added find_index_val function to functions module

• improved excel input file documentation

– added sections on job level hierarchy and the “hours” worksheet preparation,
both within the “pay_tables.xlsx format guide”.

16.1.10 0.56

June 21st, 2017

• editor tool stylistic update

– replaced the independent “junior” and “senior” slider controls with a single,
easier to use range selector slider tool

– increased the width of the sliders for easy value selection

– applied a “flex” sizing method to the controls which allows the tool to auto-
adjust the width of the controls to match the available screen size

– various other styling added

358 Chapter 16. change log

seniority_list Documentation, Release 0.65

16.1.11 0.55

May 23rd, 2017

• new dataset reports capability

This update includes a new reports module. General statistics may
be generated quickly for all calculated datasets, providing a broad
overview of how each proposed integrated list will affect employees
from each work group. This process provides useful absolute and com-
parative information for targeted attributes. The statistics are converted
to excel spreadsheets and chart images, stored within the reports folder.

Data is produced for the targeted metrics both at retirement and on an
annual basis.

The charts are smaller and of lower image quality than the charts pro-
duced by the dedicated plotting functions included with seniority_list.
This is done to reduce the time required to generate the hundreds of
charts in the output. If the user desires better quality charts for the gen-
eral overview charts, a larger chart size may be designated through a
function input.

• added a new “quick report” section to the documentation covering the new re-
porting capability

• added a new example REPORTS notebook to the program. This notebook pro-
vides code examples for the new reporting capability and will generate summary
spreadsheets and chart images for the current case study when it is executed.

• updated the ds_dictionary creation routine - output is now dataset name/dataset
key-value pair vs. the previous dataset name/(dataset, dataset name) tuple dictio-
nary values.

16.1.12 0.54

May 13th, 2017

• combined career_months_df_in and career_months_list_in into one function, ca-
reer_months

• add convert_to_datetime function

• add pcnt_format function and update plotting code to incorporate the change

• improve code relating to saving chart images

• consolidate “imp_date” and “implementation_date” references

16.1. version history 359

seniority_list Documentation, Release 0.65

• update the code that groups data according to “empkey” attribute due to a version
change in the pandas library

• update pandas “parallel coordinates” import due to a version change in the pandas
library

• add the eg_attributes plotting function. This function replaces the multi-
line_plot_by_eg plotting function. This new function is able to plot any attribute
(including date attributes) on either the x or y axis and introduces quantile mem-
bership lines and bands.

• remove multiline_plot_by_eg plotting function and eval_strings function

• docstring updates throughout

16.1.13 0.53

April 30th, 2017

Improvements with charts, plotting:

• updated the multiline_plot_by_eg, multiline_plot_by_emp,
job_level_progression, and quantile_years_in_position plotting functions

• numerous updates and improvements to chart styling control for many plotting
functions

Expanded pay exception capability:

• refactor contract_year_and_raise fuction to permit any number of pay exception
periods

• add new “pay_exceptions” worksheet in the settings.xlsx input file

• update make_skeleton.py script to use the new pay_exceptions method

New anonymizing functions:

• added capability to anonymize input data with the following new functions:

– anon_names

– anon_empkeys

– anon_dates

– anon_pay

Each of the above functions generates random substitute data for the related input data
column. These “helper” functions were combined into the following functions which
can anonymize the master.xlsx and pay_tables.xlsx files all at once, inplace.

• anon_master

360 Chapter 16. change log

seniority_list Documentation, Release 0.65

• anon_pay_table

New sampling ability:

• added the sample_dataframe function, which returns a random sample of a
dataframe (by rows), with the quantity of rows selected by the user

New excel-related functions:

• update_excel

• copy_excel_file

pdf documentation

• added downloadable pdf version of the program documentation

• formatted function definitions for proper presentation within the pdf document

Program coding improvement:

• added “if __name__ == “__main__”:” execution protection to all scripts

There were some older developemental files and references to settings remaining
within the code base that were not needed any longer.

• removed several developemental functions

• remove several items from the settings dictionary

• remove several rows from the “scalars” worksheet within the settings.xlsx file

16.1.14 0.52

April 19th, 2017

This update version focused on updating the visualization capabilities of seniority_list.

• refactor job_transfer plotting function for speed and added features

– updated function is approximately 25 times faster

– added ability to plot only targeted job level(s)

– new y scale limit option

– new min and max date options

• add new percent_bins function and corresponding percent_diff_bins plotting
function

– plots count of employees in list percentile change bins over time

• add new cohort_differential plotting function

16.1. version history 361

seniority_list Documentation, Release 0.65

– analyze differences between list locations for employees with equivalent at-
tribute values but from different groups

• add code to all notebooks for an automatic wide display

• update multiline_plot_by_emp plotting function to permit simultaneous display
of “jnum” and “jobp” attributes

• update multiline_plot_by_eg plotting function to permit plotting of values at re-
tirement for all employees

• add ability to plot individual employee progression lines with job_count_bands
plotting function

• update all plotting function code to matplotlib object-oriented style

• update many plotting function chart legend generation routines

• add capability to save charts as images (including SVG format)

• update PLOTTING notebook to incorporate new plotting functions/features

• update documentation

16.1.15 0.51

April 1st, 2017

• remove “example_chart” option from plotting functions

• add exception types to most try/except blocks throughout program

• remove “master_name” argument from join_inactives.py script

• update join_inactives.py script to permit input from editor tool output list order

• update assign_jobs_nbnf_job_changes function:

– reduce the number of arguments for the main integrated job assignment
function

– add job table dictionary to the function arguments

– eliminate the “this_job_col” variable within monthly loop

• reduce and simplify the arguments for the assign_standalone_job_changes func-
tion, and use settings dictionary and job table dictionary as arguments

• add the add_zero_col function to the functions module. This function will add a
column of zeros as the first column of a 2D numpy array

• move the code to generate the dict_job_tables.pkl dictionary file from the
make_skeleton.py script to the build_program_files.py script for consistency
with other generated files

362 Chapter 16. change log

seniority_list Documentation, Release 0.65

• add a section within the build_program_files.py script to create a loop_check
array. This boolean array will prevent unnecessary looping during the job as-
signment routine when all remaining employees have already been assigned. Re-
duces “Sample3” dataset generation times by approximately 5%.

• update RUN_SCRIPTS and PLOTTING notebooks

• update documentation

16.1.16 0.50

March 20th, 2017

This update improved the flexibility of the ratio-based conditional job assignment rou-
tines. Inputs for these routines are now designated on individual worksheets within the
settings.xlsx input file. Conditions may include any combination of jobs, weightings,
and employee groupings.

• refactor build_program_files.py script:

– change ranges relating to month time spans to sets vs ranges

– remove references to condition durations, month ranges as sets have replaced
these inputs

– add new dictionary generation routine used with input from the ratio_cond
worksheet in settings.xlsx.

– remove code related to count_cond, ratio_cond, and quota_dict.

• update converter.py to handle the basic to enhanced conversion of new ratio-
condition related dictionaries and remove code no longer needed.

• eliminate many arguments for the assign_jobs_nbnf_job_changes function and
replace with a settings dictionary argument.

• refactor variable preparation sections within the assign_jobs_nbnf_job_changes
function for use with the new dictionaries and month sets loaded from the settings
dictionary when ratio-based conditions are selected.

• refactor the assign_cond_ratio_capped and assign_cond_ratio job assignment
functions. The new functions are simpler and more flexible in terms of inputs.
Both functions accept a new dictionary argument, built from input worksheets
which have been reformatted.

• refactor the set_ratio_cond_dict function and rename it as set_snapshot_weights.
The function modifies the weightings within the ratio_dict dictionary for all jobs
at once to match existing job counts for a target month.

16.1. version history 363

seniority_list Documentation, Release 0.65

• add a “cap” argument to the distribute function. The cap argument allows the
function to be used within a ratio count-capped conditional job assignment rou-
tine.

• modify the distribute_vacancies_by_weights function for simplicity and preci-
sion. This function is no longer used and may be removed at a future date.

• the quota_dict and count_ratio_condition worksheets were removed from the
settings.xlsx input file. These worksheets were replaced with the new ra-
tio_count_capped_cond worksheet.

• the format of the ratio_cond worksheet in settings.xlsx was updated for use with
the new assign_cond_ratio function.

The job table generation has now been centralized within the make_skeleton.py
script. The job tables are now stored as a dictionary within the dill folder permitting
one-time calculation and universal program access.

• add create job tables routine to make_skeleton.py and store tables as a dictio-
nary, dill/dict_job_tables.pkl. Additionally, the j_changes and jcnts_arr vari-
ables are stored within the dictionary.

• remove job table generation routines from individual plotting functions
within the matplotlib_charting.py script, the standalone.py**script, and
the **compute_measures.py script. Replace all by reading the stored
dill/dict_job_tables.pkl dictionary.

Finally, a new utiliy function was added which prints the contents of dictionaries in an
organized, landscape fashion.

• add pprint_dict function to the matplotlib_charting module.

16.1.17 0.49

March 9th, 2017

• Change documentation references from configuration file to settings dictionary.

• Remove make_pay_tables_from_excel.py script. This script is now incorpo-
rated within the build_program_files.py script

• Change references throughout code from eg_dict to renamed p_dict.

• Create the dill folder with the build_program_files.py script if it does not exist.
An empty dill folder is no longer part of the original program files.

• Modify clear_dill_files function to check for the existence of the dill folder be-
fore executing.

• Add proposal name argument test and exception messages to com-
pute_measures.py and join_inactives.py scripts.

364 Chapter 16. change log

seniority_list Documentation, Release 0.65

• Add add_editor_list_to_excel function to matplotlib_charting module. This
function will add an edited proposal list order (output of editor tool) to the pro-
posals.xlsx input file, as a new worksheet named edit. The edited proposal list
order may be preserved in this fashion and permits an easy way to reproduce the
corresponding dataset.

• Add code to remove stored pickle files prior to overwriting for a speed improve-
ment.

• Add a return_min option to the max_of_nested_lists function.

• Extensive updates to the matplotlib_charting and the function modules doctrings
defining input types and function descriptions.

• Refactored cond_test plotting function for improved capability and output.

• Add count_ratio_dict worksheet to settings.xlsx input file. This worksheet will
eventually replace the count_ratio_condition and the quota_dict worksheets as
the count ratio condition code is updated.

• Add code to the build_program_files.py script to read the new count_ratio_dict
worksheet.

• Add code to the convert function within the converter module to convert the data
from the count_ratio_dict for an enhanced job level model when appropriate.

• Delete function make_intlists_from_columns.

• Modify function make_lists_from_columns to handle deleted function above.

• Add make_group_lists function. This function is used with Excel input (specif-
ically worksheet cells) to convert string objects (ex. “2,3”) and integers into
Python lists containing integers. This function is used with the count_ratio_dict
dictionary construction.

• Add make_eg_pcnt_column function. Create an array of values which may be
added to the input dataframe as a column reflecting the starting percentage of
each employee within his/her original employee group at month zero.

• Add make_starting_val_column function. Create an array of values which may
be added to the input dataframe as a column reflecting the starting value (month
zero) of a selected attribute for each employee for every month (repeating values
for successive months, indexed and unchanging for each employee).

• Add save_and_load_dill_folder function. Save the current dill folder to the
saved_dill_folders folder (created if it does not already exist). Load a saved dill
folder as the dill folder if it exists. This function allows previously calculated
pickle files (including the datasets) to be loaded into the dill folder for quick re-
view. All adds up to mean convenient switching between previously calculated
case study files.

16.1. version history 365

seniority_list Documentation, Release 0.65

16.1.18 0.48

February 6th, 2017

This version is a major update. All inputs for the program are now read solely from
spreadsheet workbooks - the configuration files have been completely eliminated. This
change was made to make it easier for non-programmers to interact with seniority_list
and to generally simplify the work flow when setting up the program for a particular
case study and for further parameter modifications in the course of analysis. The new
workbook containing the information previously held within the config files is named
settings.xlsx and is located within the excel folder.

The data from the new settings.xlsx spreadsheet is stored in three dictionaries which
serve as a fast data source for operations.

• Settings dictionary - essentially contains all of the information previously located
in the configuration files.

• Color dictionary - a new source of color lists for plotting.

• Attribute dictionary - a collection of dataset column name descriptions used for
plotting titles and labels.

The dictionary generation process has been incorporated within the
build_program_files script, adding to the other generated data files and com-
pensation table data. The dictionaries are stored in the dill folder as separate
files.

When beginning a new case study, the user will now simply create a new case study
folder within the excel folder and paste copies of the sample workbooks into it. The
user will then go through each spreadsheet and modify the contents as appropriate to
the new case study.

The old case_files folder and its contents are no longer used or needed. The old con-
fig.py file in the main seniority_list folder has been eliminated as well.

An added bonus of this update is the availability of a wide-range of chart plotting color
schemes. The new color dictionary is created with multiple color lists as values and
matplotlib colormap names as keys. All matplotlib colormaps are now available at all
times. Each color list is automatically generated with a length equal to the number
of job levels in the data model + 1. This supplies a color for each job level plus an
additional color for a furlough level.

All scripts and functions were updated to utilize the new dictionaries with many func-
tions receiving additional arguments and additional docstring descriptions for even
more control and customization of analysis output.

Four new functions were developed to assist with the spreadsheet to python conver-
sion.

366 Chapter 16. change log

seniority_list Documentation, Release 0.65

• make_tuples_from_columns

• make_dict_from_columns

• make_intlists_from_columns

• make_lists_from_columns

These functions are essentially “helper” functions used within the
build_program_files script and are contained within the functions module.

Two new plotting-related functions were built as well.

• make_color_list

• add_pad

The make_color_list function is able to perform multiple tasks, from producing a cus-
tom color list to plotting an example of every matplotlib colormap. It is used within
the build_program_files script to produce the color dictionary.

The add_pad function automatically spaces chart labels when they would otherwise
overlap one another. It has been incorporated within several plotting functions.

The new plotting functions are located within the matplotlib_charting module.

16.1.19 0.47

January 15th, 2016

• added a metric (attribute) description dictionary, “m_dict”, to general configura-
tion file. This dictionary will provide labels for many of the plotting functions.

• refactored the delayed implementation methodology to use standalone data
stored within a numpy array, generated by a new function, make_preimp_array.
The new method allows any pre-implementation attributes to be transferred to
the integrated dataset and is simpler than earlier code.

• refactored the “cat_order” attribute generation by employing a new function,
make_cat_order. The new function is faster than the old method and correctly
restricts standalone results to available standalone job levels.

• removed enhanced job level conditional variable assignment from case-specific
configuration files and replaced with the new convert function. The new func-
tion is contained within a new module, converter.py, which is imported by the
case-specific file(s). Only basic job level conditional job assignment data will be
entered into the case-specific configuration files now. The basic level data will
be automatically converted to enhanced data as appropriate.

16.1. version history 367

seniority_list Documentation, Release 0.65

16.1.20 0.46

December 31st, 2016

• added slice_ds_by_index_array function to matplotlib_charting mod-
ule and example to the PLOTTING notebook (subsequently renamed to
slice_ds_by_filtered_index).

– filter an entire dataframe by only selecting rows which match

the filtered results from a target month. In other words, zero in on a
slice of data from a particular month, such as employees holding a spe-
cific job in month 25. Then, using the index of those results, find only
those employees within the entire dataset as an input for further analysis
within the program.

– The output may be used as an input to a plotting function or for
other analysis. This function may also be used repeatedly with
various filters, using output of one execution as input for another
execution.

• improved the make_decile_bands function and docstring.

• updated case_template.py file variable names for simplicity.

• refactored some hard-coding found within the pre-existing condition section
within the compute_measures.py script. This change will prepare any employee
group(s) for special rights calculations.

• added numerous function docstring improvements, primarily input variable de-
scriptions.

• refactored gen_skel_emp_idx function so that it now generates a long-form em-
ployee index array in addition to the idx_array. The make_skeleton.py script
was updated to use this new output.

• refactored the align_fill_down function, removing one input.

• added numerous comments in many of the program files.

• combined the convert_jcnts_to_enhanced and con-
vert_job_changes_to_enhanced functions into one new function, con-
vert_to_enhanced. The list_builder.py script was updated to use the new
function, along with some plotting functions.

• refactored cond_test plotting function, allowing much more flexible job assign-
ment validation.

• added mark_quantiles plotting function. This function is used by the quan-
tile_groupby function below.

• added quantile_groupby plotting function.

368 Chapter 16. change log

seniority_list Documentation, Release 0.65

– This function permits the user to group the members of a selected employees
group(s) into equally-sized sections, or quantiles, and track the attributes
of those groups over time using various groupby methods. The available
methods are as follows (default is median):

[mean, median, first, last, min, max]

– For example, an input of 40 for the quantiles input would equate to 40 sec-
tions of the initial employee group population, each representing 2.5% of
the group. The progression of these group segments will be calculated and
plotted, maintaining the original members of each segment. quantile calcu-
lation from separate groups is independent of each other, but can be tracked
through an integrated dataset for robust comparison of outcome.

– If the user selects “cat_order” (job category numerical ranking), color bands
representing the various job levels may be displayed as a chart background.
This provides the user with a clear visualization of the way the employee
group would progress through the various job levels over time under various
list ordering proposals.

– Examples of the quantile_groupby plotting function have been added to the
PLOTTING notebook.

• extensive narrative, definitions, and examples have been added to the “user
guide” section of the documentation.

16.1.21 0.45

November 27th, 2016

• upgraded the editor tool function.

– The editor tool will now automatically use the edited dataset for the recursive
editing routine. The initial “compare_ds_text” dataset reference will now
only have effect when an edited dataset does not exist.

– The process may be interrupted and reset with a new “reset” argument.

– The function will default to the first dataset proposal if the “com-
pare_ds_text” input is invalid.

– The title of the differential chart will now reference the dataset being com-
pared to the baseline.

• many minor code improvements.

• continual work on the program documentation, particularly the operational
overview and the user guide.

16.1. version history 369

seniority_list Documentation, Release 0.65

16.1.22 0.44

October 20th, 2016

• Refactored make_pay_tables_from_excel.py script.

– The requirements for the input Excel workbook related to compensation
have been greatly simplified. Only two worksheets are necessary, one con-
taining basic job level hourly rates and another with monthly pay hours per
level and job description labels.

– Enhanced job tables are now automatically prepared when appropriate. This
is controlled by the config.py enhanced_jobs variable.

– Furlough job levels are now added automatically as the bottom level within
each annual grouping of pay data.

– Total monthly compensation tables may be ordered by a select pay year and
longevity level.

– The script now creates a new Excel-format file with worksheets containing
the calculated pay tables utilized for the case study, pay_table_data.xlsx.
Sorted pay tables may be examined and the sort basis changed if desired.
The workbook also contains other worksheets pertaining to the job level
order used within the model. The file is stored in an auto-generated, case-
study named folder within the “reports” folder.

– Other features added as described within the user guide.

• The join_inactives.py script now stores its Excel file output within the “reports”
folder, next to the pay data file mentioned above.

16.1.23 0.43

October 5th, 2016

• Added the job_count_bands plotting function to the library of built-in plotting
functions included with seniority_list. This function returns a chart which dis-
plays progressive counts of job opportunities available to selected employee
group(s) under selected list order proposal(s) as an area chart with bands of dif-
ferent colors representing job levels. The input data may be filtered by up to
three attributes, so that analysis may target particular population segments, as
described in the previous version summary.

• Continued work developing the “user guide” section of the documentation.

370 Chapter 16. change log

seniority_list Documentation, Release 0.65

16.1.24 0.42

September 28th, 2016

• This version includes a major update to the plotting functions and changes the
way datasets are loaded for analysis.

• Most built-in plotting functions now have a three-layer filtering capability. This
permits simple drill-down into the dataset for further insight. (Note: This is an
added user-friendly convenience feature only. The capability to pre-filter datasets
existed prior to this update but required additional programming knowledge to
use it.) Analysis of specific subsets of the datasets is now straight-forward and
much more convenient. For example, a target filtered attribute dataset with em-
ployees above a certain age, with a minimum longevity value, who are holding a
certain job would be trivial to select with this new capability. For most plotting
functions, a filtered subset could be viewed for a particular model month as well.
This added filtering capability is handled with the new filter_ds function. The
filter_ds function checks for attribute filtering arguments and uses them to filter
the datasets prior to analysis within the various plotting functions.

• The way that pickeled datasets are read for use in the program has been updated.
The names of the case study proposal worksheets are read from the source Excel
workbook (proposals.xlsx). The program then looks for the matching datasets
within the dill folder and loads them into a dictionary, using the proposal names
as keys. Labels associated with the datasets are generated at the same time. These
labels are used in the plotting functions. This functionality is provided with the
new load_datasets function.

• Another new function allows flexible dataset variable input for for nearly all of
the plotting functions. The determine_dataset function allows inputs to be a
string key referenced to the dictionary output of the load_datasets function, or
any variable representing a pandas dataframe.

• All program files and notebooks were updated to handle the new methods de-
scribed above and the plotting functions documentation was revised.

16.1.25 0.41

September 3rd, 2016

• Removed “fur.pkl”, “sg.pkl”, and “active_each_month.pkl” file generation from
the build_program_files.py script. These files were no longer needed.

• Consolidated the two standalone dataset scripts into one. This eliminated the
standalone_with_job_changes.py and standalone_no_job_changes.py scripts in
favor of the new script, standalone.py.

16.1. version history 371

seniority_list Documentation, Release 0.65

• Refactored config.py to create a job change schedule reflecting no job changes
when the compute_with_job_changes option is False. This allows the job
changes routine to run with all dataset calculations, adding simplicity and elimi-
nating unnecessary code.

• Updated the pay_tables.xlsx Excel file by removing worksheets which are no
longer needed.

• Added a quota_dict section to the basic job level configuration section of sam-
ple3.py and the case_template.py files.

• Removed the “actives_only” option in the config.py file. All datasets will now
include any furloughed employees and will not incorporate other inactive em-
ployees.

• Modifications made with other program files to accommodate the removal of the
“actives_only” option.

16.1.26 0.40

August 31st, 2016

• Add clear_dill_files function, used by “auto-cleaning” below.

• Add “auto-cleaning” of dill folder when case_study config input is changed. This
prevents residual files from a previous study coexisting with new case study files
within the “dill” folder.

• Add auto-generated sample employee and employee list to PLOTTING note-
book. This will pick median employees from any list(s) for use with sample
plotting.

• Moved one-time editor tool ipywidget config command to last cell in EDI-
TOR_TOOL notebook. A recent update to ipywidgets required this command
to be run one time. The user will uncomment the code, run the cell, then re-
comment the code.

• Updated case_template.py file to match recent upgrades.

• Add documentation for website user guide relating to input file naming conven-
tions and file locations.

372 Chapter 16. change log

seniority_list Documentation, Release 0.65

16.1.27 0.39

August 30th, 2016

• Simplified structure of config.py module. Users will have a much clearer under-
standing of modifiable vs. imported variables from the case-specific config file.
Sections designed for user-modifiable inputs are now clearly delineated.

• Added pay table related configuration file inputs which will be imported from
the case-specific config file including option for a future raise and/or temporary
pay scale exceptions.

• Modified contract_pay_year_and_raise function to accept the customized pay-
related inputs from config file.

• Added the plotting function eg_boxplot. This function will plot actual attribute
ranges for employee groups over time as boxplots.

16.1.28 0.38

August 26th, 2016

• This update is a collection of minor edits, docstring additions, notebook adjust-
ments, and refactoring.

• EDITOR notebook. . . recent update to ipywidgets requires a one line config-
uration command for proper operation. Added a cell within the notebook to
accomplish that requirement. (Note: the update broke the button colors)

• PLOTTING notebook. . . adjusted variable inputs within notebook cells to match
minor configuration file color list changes

• Updated chart labeling for the group_average_and_median function

• Improved rows_of_color plotting function, users may now select any job level
combined with any employee group(s) for any month, also can display other
categories such as furlough or other special group

• Added documentation for several plotting functions

• Removed standalone or furlough colors from case-specific configuration color
lists. Now these additional colors are added when needed from within a function.

16.1. version history 373

seniority_list Documentation, Release 0.65

16.1.29 0.37

August 12th, 2016

• Adjusted editor function widget positioning, and minor code adjustment to per-
mit compatibility with anaconda ipywidgets version (which is lagging behind
latest version significantly, though the editor retains full functionality).

• Added group_average_and_median plotting function. This function permits
plotting of group average and/or median for a selected attribute over time for a
main and secondary dataset. Standalone data may be used as main or secondary
data. The attributes may be further filtered/sliced by up to 3 constraints, such as
age, longevity, or job level. This function can plot basic data such as average list
percentage or could, for example, plot the average job category rank for employ-
ees hired prior to a certain date who are over or under a certain age, for a selected
integrated dataset and/or standalone data (or for two integrated datasets).

16.1.30 0.36

August 9th, 2016

• job_time_change function may now display job numbers or custom job labels
(from case-specific config file).

• Added EDITOR_TOOL.ipynb notebook to repository.

• Eliminated need for “edit_mode” input within general configuration file. The
program will now use edit mode whenever the editor tool is used.

16.1.31 0.35

August 4th, 2016

• Refactored parallel plotting function to handle any number of datasets and any
number of employee groups.

• Added new plotting function job_time_change. This function compares the
amount time in months spent in various jobs under different list proposals. The
information is presented only for employees who experience a change. Any num-
ber of datasets, employee groups, and job levels may be selected for analysis.

• Added documentation for multiple plotting functions

374 Chapter 16. change log

seniority_list Documentation, Release 0.65

16.1.32 0.34

July 31st, 2016

• Added cat_order attribute (job rank number) to standalone dataset. The cat_order
for each independent group is normalized to be accurate for the integrated group.
This allows direct comparison with integrated job levels.

• Refactored compute_measures script so that standalone cat_order data is
merged with integrated cat_order data when a delayed implementation ex-
ists. This new capability can be visualized for individual employees with the
job_level_progression plotting function.

16.1.33 0.33

July 26th, 2016

• Refactored eg_diff_boxplot function to allow any number of datasets to be com-
pared with standalone data or with each other. Employee groups for analysis may
now be selected and the plot colors will be correct for the group(s). Option added
to exclude employees who will be furloughed at any point within the data model,
reducing or eliminating outlier data for some attribute measures.

16.1.34 0.32

July 17th, 2016

• Added additional filtering capability to the editor tool. Filtering may now be ac-
complished with monthly data combined with with additional attribute selection.

• Added reset_editor function to restore the editor if invalid filter attributes are se-
lected, leading to an exception. Exception handling will be added as my available
developer time permits.

16.1.35 0.31

July 16th, 2016

• Added option to increase employee retirement age. The retirement age may be
raised with specified increments at designated times in the future.

• New function clip_ret_ages sets proper retirement age for employees in their
retirement month when the model includes a retirement age increase.

• Added a “ret_mark” column during the skeleton file creation routine which is
passed to the calculated datasets. The ret_mark column will indicate “1” when

16.1. version history 375

seniority_list Documentation, Release 0.65

an employee is in their last working month. This is helpful for filtering or plotting
retirement data when the datasets contain multiple retirement ages.

16.1.36 0.30

July 10th, 2016

• Altered standalone dataset generation scripts to accept any number of employee
groups.

• Modified differential scatter plotting function to accept any number of proposals
and employee groups

• Replaced numpy “unique” function with pandas “unique” function throughout
the code for speed improvement

16.1.37 0.29

July 7th, 2016

• Changed “cat_order” attribute calculation method to a groupby operation vs. a
sort and resort yielding 10-15 percent reduction in total dataset compilation time.

16.1.38 0.28

July 6th, 2016

• Added a case_files folder to the project. This will be the home for data specific
files belonging to a particular integration case. The general config file will import
the case-specific information and also allow other general options to be added
and used by seniority_list. This arrangement will permit multiple cases to be
available for analysis, easily selected with one input within the general config
file.

• Moved the special condition job assignment data out of the general config file
and into the case-specific file(s).

• Moved the notebooks from the notebook folder to the seniority_list folder and
deleted the notebooks folder. This will allow the notebooks to run without import
issues at this point.

• Added information to the “installation” and “user guide” sections of the docu-
mentation. Much more to come.

376 Chapter 16. change log

seniority_list Documentation, Release 0.65

16.1.39 0.27

July 4th, 2016

• Added cond_test function. Used to visualize selected job counts applicable to
computed job assignment condition. Primary usage is testing, though the func-
tion can chart any job level(s).

• Added single_emp_compare function. Select a single employee and compare
proposal outcomes using various calculated measures.

• Add installation page to documentation.

• Add notebooks folder to project with “Plotting” and “Run_Scripts” jupyter note-
book files.

• Minor code cleanup.

16.1.40 0.26

June 24th, 2016

• Added plotting functions job_count_charts and emp_quick_glance. Up-
dated the quantile_years_in_position plot layout and added helper function
build_subplotting_order.

16.1.41 0.25

June 18th, 2016

• Initial work for config, job assign, and data source refactor. Initial spreadsheet
list data, compensation information, and order proposals will be contained within
case-specific folders within the “excel” folder and will be selected with a config
file variable. Basic program files are generated from these properly formatted
source spreadsheets. Other case data such as job counts, job changes, conditions,
and recall schedules will be contained within case-specific python modules.

• Function module docstring cleanup

16.1. version history 377

seniority_list Documentation, Release 0.65

16.1.42 0.24

June 12th, 2016

• Split align function into two functions: align_next and align_fill_down. Month-
to-month data alignment is now accomplished with numpy index alignment vs.
pandas dataframe alignment. The new align_next function replaces the old align
function and is primarily used during the job assignment portion of the dataset
generation scripts. Net result is an overall 40-50 percent reduction in the time
required for dataset generation.

• Other minor code improvements throughout and additions to function documen-
tation.

16.1.43 0.23

June 5th, 2016

• Added find_row_orphans and compare_dataframes functions to the list_builder
script. These functions are used to compare dataframe columns and/or entire
dataframes. They are able to pinpoint differences within large datasets very
quickly, which is particularly helpful during the master list data construction
phase.

16.1.44 0.22

June 3rd, 2016

• Added sort_eg_attributes, build_list, sort_and_rank, and names_to_integers
functions to the list_builder script. List proposals may now be rapidly con-
structed from sample or case master lists. One or more attribute columns may
be selected as list order inputs and a “hybrid” ordering achieved by applying
variable weightings to those columns.

16.1.45 0.21

May 28th, 2016

• Added list_builder script and the prepare_master_list function. This is the first
step toward manual list building using various attribute weighting, merging, and
sorting. This feature is considered a convenience tool only. It may be used for
initial list building and ordering prior to analysis and further editing.

378 Chapter 16. change log

seniority_list Documentation, Release 0.65

16.1.46 0.20

May 27th, 2016

• Added a sample pay table file to the sample_data folder. Sample pay tables may
now be generated from the sample file for use with the sample datasets. The
sample file simulates a typical Excel input file with pay scale information.

• Replaced the previous pay table generation script with a modified version. The
script converts the Excel workbook to Python pickle files for use within the pro-
gram, either with real or sample data.

16.1.47 0.19

May 26th, 2016

• Added sample master list and sample proposals (both in Excel format) to the
sample_data folder. These files can be the source for testing the operation of the
program and creating sample datasets when the “sample_mode” option within
the configuration file is set to “True”. Sample pay-related files will be added
soon. Updated several other scripts, including significant updates to the config
file, so they will operate with the sample data.

• Added print_config_selections function. The function provides a quick report of
configuration file selections in a dataframe format.

16.1.48 0.18

May 19th, 2016

• Added build_files script. Build supporting files from initial Excel file input such
as master data list, proposal orderings, last month percent, etc.

• Added standalone_no_job_changes script. Used with most basic dataset cre-
ation. This file is rarely used but available if a dataset without any job changes
over time is desired.

• Other coding changes to format the program to accept a wider range of list input

16.1. version history 379

seniority_list Documentation, Release 0.65

16.1.49 0.17

May 16th, 2016

• Added join_inactives script. Edited or active employee only lists may now be
merged into the original master list which contains all employees including in-
active employees (such as sick leave, supervisory, etc.) The inactives may be
attached either to the “just senior” employee group active cohort or the “just ju-
nior” with an argument option. The resulting list will be sorted and numbered in
the new list order.

16.1.50 0.16

May 14th, 2016

• Added range_diff plotting function which computes and displays aggregate dif-
ferential data over time, comparing proposal results with standalone data.

• Modified compute_measures script. A master data file will now be reordered by
a specific proposal list order or an order from the editor tool instead of storing
separate data files for each proposal.

16.1.51 0.15

May 12th, 2016

• Added eg_multiplot_with_cat_order function. Adds flexible x y plotting for most
attributes with special color bands and scaling when cat_order is the selected
measure. The function is able to select certain employee groups for independent
views.

16.1.52 0.14

May 2nd, 2016

• Added multiple controls to the editor interface making the tool easier to use.
“One click” recalculation with chart updating is now enabled.

380 Chapter 16. change log

seniority_list Documentation, Release 0.65

16.1.53 0.13

May 1st, 2016

• Added editor function. Editor is an interactive, visual list editing tool for use
within the Jupyter notebook. This tool can be used to remove list distortions
using comparative data.

16.1.54 0.12

April 26th, 2016

• Added job_transfer function.

16.1.55 0.11

April 22nd, 2016

• Added edit mode to config file in preparation for visual span selector editing tool.

• Minor documentation edits including adding proper table format for documenta-
tion format.

• New differential option added to quantile_years_in_position plotting function
along with other plot output options.

• Added new quantile_bands_in_position plotting function.

16.1.56 0.10

April 15th, 2016

• Initial commit.

16.1. version history 381

seniority_list Documentation, Release 0.65

382 Chapter 16. change log

CHAPTER

SEVENTEEN

LICENSE

17.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is per-
mitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other
kinds of works.

The licenses for most software and other practical works are designed to take away
your freedom to share and change the works. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change all versions of a
program–to make sure it remains free software for all its users. We, the Free Software
Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for them if you wish), that you receive source code
or can get it if you want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or
asking you to surrender the rights. Therefore, you have certain responsibilities if you
distribute copies of the software, or if you modify it: responsibilities to respect the
freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must pass on to the recipients the same freedoms that you received. You must

383

http://fsf.org/

seniority_list Documentation, Release 0.65

make sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to
copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires
that modified versions be marked as changed, so that their problems will not be at-
tributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions
of the software inside them, although the manufacturer can do so. This is fundamen-
tally incompatible with the aim of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we have designed
this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose comput-
ers, but in those that do, we wish to avoid the special danger that patents applied to a
free program could make it effectively proprietary. To prevent this, the GPL assures
that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such
as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would

384 Chapter 17. license

seniority_list Documentation, Release 0.65

make you directly or secondarily liable for infringement under applicable copyright
law, except executing it on a computer or modifying a private copy. Propagation in-
cludes copying, distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work
as a whole, that (a) is included in the normal form of packaging a Major Component,
but which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

17.1. GNU GENERAL PUBLIC LICENSE 385

seniority_list Documentation, Release 0.65

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without con-
ditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively for
you, or provide you with facilities for running those works, provided that you comply
with the terms of this License in conveying all material for which you do not control
copyright. Those thus making or running the covered works for you must do so ex-
clusively on your behalf, under your direction and control, on terms that prohibit them
from making any copies of your copyrighted material outside their relationship with
you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention
of technological measures to the extent such circumvention is effected by exercising
rights under this License with respect to the covered work, and you disclaim any in-
tention to limit operation or modification of the work as a means of enforcing, against
the work’s users, your or third parties’ legal rights to forbid circumvention of techno-
logical measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may
offer support or warranty protection for a fee.

386 Chapter 17. license

seniority_list Documentation, Release 0.65

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b) The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with
any applicable section 7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such permission if
you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by
this License, on a durable physical medium customarily used for software inter-
change, for a price no more than your reasonable cost of physically performing

17.1. GNU GENERAL PUBLIC LICENSE 387

seniority_list Documentation, Release 0.65

this conveying of source, or (2) access to copy the Corresponding Source from a
network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or
for a charge), and offer equivalent access to the Corresponding Source in the
same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the
place to copy the object code is a network server, the Corresponding Source may
be on a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes,
or (2) anything designed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user, “normally used” refers
to a typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions
of a covered work in that User Product from a modified version of its Corresponding
Source. The information must suffice to ensure that the continued functioning of the
modified object code is in no case prevented or interfered with solely because modifi-
cation has been made.

If you convey an object code work under this section in, or with, or specifically for use
in, a User Product, and the conveying occurs as part of a transaction in which the right
of possession and use of the User Product is transferred to the recipient in perpetuity or

388 Chapter 17. license

seniority_list Documentation, Release 0.65

for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works contain-
ing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different
from the original version; or

17.1. GNU GENERAL PUBLIC LICENSE 389

seniority_list Documentation, Release 0.65

d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e) Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone
who conveys the material (or modified versions of it) with contractual assump-
tions of liability to the recipient, for any liability that these contractual assump-
tions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is
the first time you have received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days after your receipt of
the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

390 Chapter 17. license

seniority_list Documentation, Release 0.65

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence
of using peer-to-peer transmission to receive a copy likewise does not require accep-
tance. However, nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do not accept this
License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty,
or other charge for exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled
by the contributor, whether already acquired or hereafter acquired, that would be in-
fringed by some manner, permitted by this License, of making, using, or selling its
contributor version, but do not include claims that would be infringed only as a con-
sequence of further modification of the contributor version. For purposes of this defi-
nition, “control” includes the right to grant patent sublicenses in a manner consistent
with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

17.1. GNU GENERAL PUBLIC LICENSE 391

seniority_list Documentation, Release 0.65

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and
under the terms of this License, through a publicly available network server or other
readily accessible means, then you must either (1) cause the Corresponding Source to
be so available, or (2) arrange to deprive yourself of the benefit of the patent license
for this particular work, or (3) arrange, in a manner consistent with the requirements
of this License, to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent license, your con-
veying the covered work in a country, or your recipient’s use of the covered work in a
country, would infringe one or more identifiable patents in that country that you have
reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of
the rights that are specifically granted under this License. You may not convey a cov-
ered work if you are a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied li-
cense or other defenses to infringement that may otherwise be available to you under
applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a con-
sequence you may not convey it at all. For example, if you agree to terms that obligate
you to collect a royalty for further conveying from those to whom you convey the Pro-

392 Chapter 17. license

seniority_list Documentation, Release 0.65

gram, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of
your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

17.1. GNU GENERAL PUBLIC LICENSE 393

seniority_list Documentation, Release 0.65

MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each
file should have at least the “copyright” line and a pointer to where the full notice is
found.

{one line to give the program’s name and a brief idea of what it does.}
Copyright (C) {year} {name of author}

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when
it starts in an interactive mode:

394 Chapter 17. license

http://www.gnu.org/licenses/

seniority_list Documentation, Release 0.65

{project} Copyright (C) {year} {fullname} This program comes with AB-
SOLUTELY NO WARRANTY; for details type `show w’. This is free soft-
ware, and you are welcome to redistribute it under certain conditions; type
`show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate parts of the Gen-
eral Public License. Of course, your program’s commands might be different; for a GUI interface,
you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on
this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.
But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

17.1. GNU GENERAL PUBLIC LICENSE 395

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

seniority_list Documentation, Release 0.65

396 Chapter 17. license

CHAPTER

EIGHTEEN

CONTACT

The seniority_list program provides a pathway to fair, equitable, and transparent work-
force integration outcome through modern data analysis technology - while signifi-
cantly reducing the cost, time, and angst historically expended in past procedings.

Please note that while seniority_list was developed with the airline industry in mind,
it may be adapted to any industry or group where workers operate under a seniority
system.

I have recently co-authored an article introducing seniority_list which was published
by Cornell University. Please click here125 for a download link to the paper.

Questions, comments, suggestions, and consulting inquiries are welcome.

Bob Davison

rubydatasystems@fastmail.net

125 http://scholarship.sha.cornell.edu/chrpubs/246/

397

http://scholarship.sha.cornell.edu/chrpubs/246/
mailto:rubydatasystems@fastmail.net

seniority_list Documentation, Release 0.65

398 Chapter 18. contact

PYTHON MODULE INDEX

c
converter, 239

e
editor_function, 241

f
functions, 245

i
interactive_plotting, 279

l
list_builder, 281

m
matplotlib_charting, 287

r
reports, 345

399

seniority_list Documentation, Release 0.65

400 Python Module Index

INDEX

A
add() (editor_function.Kwargs method), 241
add_pad() (in module matplotlib_charting),

287
add_zero_col() (in module functions), 245
age_correction() (in module functions),

245
age_kde_dist() (in module mat-

plotlib_charting), 287
age_vs_spcnt() (in module mat-

plotlib_charting), 288
align_fill_down() (in module functions),

246
align_next (in module functions), 246
alpha_list() (in module editor_function),

241
annual_charts() (in module reports), 345
anon_dates() (in module functions), 246
anon_empkeys() (in module functions), 247
anon_master() (in module functions), 247
anon_names() (in module functions), 249
anon_pay() (in module functions), 250
anon_pay_table() (in module functions),

250
assign_cond_ratio() (in module func-

tions), 250
assign_job_counts (in module functions),

251
assign_jobs_full_flush_job_changes()

(in module functions), 252
assign_jobs_nbnf_job_changes()

(in module functions), 252
assign_standalone_job_changes()

(in module functions), 254

B
bk_basic_interactive() (in module in-

teractive_plotting), 279
build_list() (in module list_builder), 281
build_subplotting_order() (in mod-

ule matplotlib_charting), 289

C
career_months() (in module functions),

255
clear() (editor_function.Kwargs method),

241
clear_dill_files() (in module func-

tions), 256
clip_ret_ages() (in module functions),

256
cohort_differential() (in module mat-

plotlib_charting), 289
color_list() (in module editor_function),

241
compare_dataframes() (in module

list_builder), 282
cond_test() (in module mat-

plotlib_charting), 291
contract_year_and_raise() (in mod-

ule functions), 256
convert() (in module converter), 239
convert_to_datetime() (in module

functions), 256
convert_to_enhanced() (in module

functions), 257
convert_to_hex() (in module functions),

257
converter (module), 239

401

seniority_list Documentation, Release 0.65

copy_excel_file() (in module functions),
258

count_avail_jobs (in module functions),
259

count_per_month() (in module functions),
259

create_snum_and_spcnt_arrays()
(in module functions), 259

cross_val (in module functions), 260

D
Data (class in editor_function), 241
determine_dataset() (in module mat-

plotlib_charting), 293
diff_range() (in module mat-

plotlib_charting), 293
differential_scatter() (in module

matplotlib_charting), 295
display_proposals() (in module mat-

plotlib_charting), 297
distribute() (in module functions), 260

E
editor() (in module editor_function), 241
editor_function (module), 241
eg_attributes() (in module mat-

plotlib_charting), 297
eg_boxplot() (in module mat-

plotlib_charting), 300
eg_diff_boxplot() (in module mat-

plotlib_charting), 302
eg_multiplot_with_cat_order() (in

module matplotlib_charting), 304
eg_quotas() (in module functions), 260
emp_quick_glance() (in module mat-

plotlib_charting), 305

F
filter_ds() (in module mat-

plotlib_charting), 306
find_index_locs() (in module

list_builder), 282
find_index_val() (in module functions),

261
find_nearest (in module functions), 261

find_row_orphans() (in module
list_builder), 282

find_series_locs() (in module
list_builder), 283

functions (module), 245

G
gen_month_skeleton (in module func-

tions), 261
gen_skel_emp_idx (in module functions),

261
get_indexes (in module functions), 262
get_job_change_months() (in module

functions), 262
get_job_reduction_months() (in mod-

ule functions), 262
get_month_slice() (in module functions),

262
get_recall_months() (in module func-

tions), 262
group_average_and_median() (in mod-

ule matplotlib_charting), 306

H
hex_dict() (in module functions), 262

I
interactive_plotting (module), 279

J
job_count_bands() (in module mat-

plotlib_charting), 309
job_count_charts() (in module mat-

plotlib_charting), 310
job_diff_to_excel() (in module re-

ports), 347
job_gain_loss_table() (in module

functions), 262
job_grouping_over_time() (in module

matplotlib_charting), 311
job_level_progression() (in module

matplotlib_charting), 313
job_time_change() (in module mat-

plotlib_charting), 315

402 Index

seniority_list Documentation, Release 0.65

job_transfer() (in module mat-
plotlib_charting), 318

K
Kwargs (class in editor_function), 241

L
line_widths() (in module edi-

tor_function), 243
list_builder (module), 281
load_datasets() (in module functions),

263
longevity_at_startdate() (in module

functions), 263

M
make_cat_order() (in module functions),

264
make_color_list() (in module mat-

plotlib_charting), 319
make_dataset() (in module edi-

tor_function), 243
make_decile_bands() (in module func-

tions), 264
make_delayed_job_counts() (in mod-

ule functions), 265
make_dict_from_columns() (in module

functions), 265
make_eg_pcnt_column() (in module

functions), 266
make_group_lists() (in module func-

tions), 267
make_intgrtd_from_sep_stove_lists()

(in module functions), 267
make_jcnts() (in module functions), 268
make_lists_from_columns() (in mod-

ule functions), 268
make_lower_slice_limits() (in mod-

ule functions), 269
make_original_jobs_from_counts()

(in module functions), 269
make_preimp_array() (in module func-

tions), 270
make_starting_val_column() (in mod-

ule functions), 270

make_stovepipe_jobs_from_jobs_arr()
(in module functions), 271

make_stovepipe_prex_shortform()
(in module functions), 271

make_tuples_from_columns() (in mod-
ule functions), 272

mark_for_furlough() (in module func-
tions), 272

mark_for_recall() (in module functions),
273

mark_fur_range (in module functions), 273
mark_quantiles() (in module mat-

plotlib_charting), 320
matplotlib_charting (module), 287
max_of_nested_lists() (in module

functions), 274
monotonic() (in module functions), 274
multiline_plot_by_emp() (in module

matplotlib_charting), 321

N
names_to_integers() (in module

list_builder), 283
numeric_test() (in module mat-

plotlib_charting), 322

P
parallel() (in module mat-

plotlib_charting), 323
pct_format() (in module mat-

plotlib_charting), 324
percent_bins() (in module mat-

plotlib_charting), 324
percent_diff_bins() (in module mat-

plotlib_charting), 325
pprint_dict() (in module mat-

plotlib_charting), 326
prepare_master_list() (in module

list_builder), 284
print_settings() (in module functions),

274
PropOrder (class in editor_function), 241

Q
quantile_bands_over_time() (in mod-

Index 403

seniority_list Documentation, Release 0.65

ule matplotlib_charting), 327
quantile_groupby() (in module mat-

plotlib_charting), 328
quantile_years_in_position() (in

module matplotlib_charting), 332

R
remove() (editor_function.Kwargs method),

241
remove_zero_groups() (in module func-

tions), 274
reports (module), 345
retirement_charts() (in module re-

ports), 347
rows_of_color() (in module mat-

plotlib_charting), 335

S
sample_dataframe() (in module func-

tions), 274
save_and_load_dill_folder() (in

module functions), 275
set_snapshot_weights() (in module

functions), 276
single_emp_compare() (in module mat-

plotlib_charting), 337
slice_ds_by_filtered_index() (in

module matplotlib_charting), 338
sort_and_rank() (in module list_builder),

284
sort_eg_attributes() (in module

list_builder), 284
squeeze_increment() (in module func-

tions), 276
squeeze_logrithmic() (in module func-

tions), 276
starting_age() (in module functions), 277
stats_to_excel() (in module reports),

349
stripplot_dist_in_category() (in

module matplotlib_charting), 338
stripplot_eg_density() (in module

matplotlib_charting), 340

T
test_df_col_or_idx_equivalence()

(in module list_builder), 285
to_percent() (in module mat-

plotlib_charting), 342

U
update() (editor_function.Kwargs method),

241
update_data() (editor_function.Data

method), 241
update_excel() (in module functions), 277
update_name() (editor_function.PropOrder

method), 241
update_order() (edi-

tor_function.PropOrder method),
241

use_first_proposal_found() (in mod-
ule editor_function), 243

V
violinplot_by_eg() (in module mat-

plotlib_charting), 342

404 Index

	I seniority_list
	features
	program notes
	installation
	dependencies
	installing Python and Python libraries
	installing seniority_list

	operational overview
	abstract
	basics

	quick outline of seniority_list
	gather and prepare data
	build the basic program files from the input data
	create the “skeleton”
	calculate standalone dataset
	calculate integrated order-dependent dataset
	analyze results
	modify list order with the editor tool (optional)
	create lists with list_builder (optional)
	reinsert inactives

	interacting with seniority_list

	user guide
	general
	program components and file structure

	program flow
	input data
	build program files
	creating the static ‘skeleton’ file
	creating datasets
	filtering and slicing datasets
	visualization

	editor tool
	the editor tool controls
	using the editor tool
	summary

	building lists
	notebook interface
	notebook basics
	sample notebooks

	program demonstration
	new case study
	changing program options or settings
	saving/loading calculated case study data
	anonymizing input data

	program restoration

	excel input files
	master.xlsx
	master.xlsx format guide

	proposals.xlsx
	proposal.xlsx format guide

	pay_tables.xlsx
	pay_tables.xlsx format guide
	job level hierarchy

	settings.xlsx
	settings.xlsx format guide

	anonymizing input data

	quick report
	general
	computed statistics
	grouping method definitions
	excel files
	chart images
	time-in-job and career pay differential report

	example gallery
	screenshots and notes
	editor tool

	converter module
	editor_function module
	functions module
	interactive_plotting module
	list_builder module
	matplotlib_charting module
	reports module
	change log
	version history
	0.65
	0.64
	0.63
	0.62
	0.61
	0.60
	0.59
	0.58
	0.57
	0.56
	0.55
	0.54
	0.53
	0.52
	0.51
	0.50
	0.49
	0.48
	0.47
	0.46
	0.45
	0.44
	0.43
	0.42
	0.41
	0.40
	0.39
	0.38
	0.37
	0.36
	0.35
	0.34
	0.33
	0.32
	0.31
	0.30
	0.29
	0.28
	0.27
	0.26
	0.25
	0.24
	0.23
	0.22
	0.21
	0.20
	0.19
	0.18
	0.17
	0.16
	0.15
	0.14
	0.13
	0.12
	0.11
	0.10

	license
	GNU GENERAL PUBLIC LICENSE

	contact
	Python Module Index
	Index

